{"title":"Semi-Supervised Contrastive Learning for Generalizable Motor Imagery EEG Classification","authors":"Jinpei Han, Xiao Gu, Benny P. L. Lo","doi":"10.1109/BSN51625.2021.9507038","DOIUrl":null,"url":null,"abstract":"Electroencephalography (EEG) is one of the most widely used brain-activity recording methods in non-invasive brain-machine interfaces (BCIs). However, EEG data is highly nonlinear, and its datasets often suffer from issues such as data heterogeneity, label uncertainty and data/label scarcity. To address these, we propose a domain independent, end-to-end semi-supervised learning framework with contrastive learning and adversarial training strategies. Our method was evaluated in experiments with different amounts of labels and an ablation study in a motor imagery EEG dataset. The experiments demonstrate that the proposed framework with two different backbone deep neural networks show improved performance over their supervised counterparts under the same condition.","PeriodicalId":181520,"journal":{"name":"2021 IEEE 17th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 17th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSN51625.2021.9507038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
Electroencephalography (EEG) is one of the most widely used brain-activity recording methods in non-invasive brain-machine interfaces (BCIs). However, EEG data is highly nonlinear, and its datasets often suffer from issues such as data heterogeneity, label uncertainty and data/label scarcity. To address these, we propose a domain independent, end-to-end semi-supervised learning framework with contrastive learning and adversarial training strategies. Our method was evaluated in experiments with different amounts of labels and an ablation study in a motor imagery EEG dataset. The experiments demonstrate that the proposed framework with two different backbone deep neural networks show improved performance over their supervised counterparts under the same condition.