Regularized functional matching pursuit for the spherical multiple-shell electro-magnetoencephalography problem

S. Leweke, V. Michel
{"title":"Regularized functional matching pursuit for the spherical multiple-shell electro-magnetoencephalography problem","authors":"S. Leweke, V. Michel","doi":"10.1553/etna_vol57s153","DOIUrl":null,"url":null,"abstract":". Reconstruction of the neuronal current inside the human brain from non-invasive measurements of the magnetic flux density via magnetoencephalography (MEG) or of electric potential differences via electroencephalography (EEG) is an invaluable tool for neuroscientific research, as it provides measures of activity in the brain. However, it is also a severely ill-posed inverse problem. Assuming spherical geometries, we consider the spherical multiple-shell model for the inverse MEG and EEG problem and apply the regularized functional matching pursuit algorithm (RFMP) for its solution. We present a new convergence proof for the RFMP for operators between two infinite-dimensional Hilbert spaces. Moreover, we utilize the complementarity of EEG and MEG data to combine inversions of simultaneous electric and magnetic measurements. Finally, we test the algorithm numerically on synthetic data using several Sobolev norms as penalty term and apply it to real data. Sobolev","PeriodicalId":282695,"journal":{"name":"ETNA - Electronic Transactions on Numerical Analysis","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ETNA - Electronic Transactions on Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1553/etna_vol57s153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

. Reconstruction of the neuronal current inside the human brain from non-invasive measurements of the magnetic flux density via magnetoencephalography (MEG) or of electric potential differences via electroencephalography (EEG) is an invaluable tool for neuroscientific research, as it provides measures of activity in the brain. However, it is also a severely ill-posed inverse problem. Assuming spherical geometries, we consider the spherical multiple-shell model for the inverse MEG and EEG problem and apply the regularized functional matching pursuit algorithm (RFMP) for its solution. We present a new convergence proof for the RFMP for operators between two infinite-dimensional Hilbert spaces. Moreover, we utilize the complementarity of EEG and MEG data to combine inversions of simultaneous electric and magnetic measurements. Finally, we test the algorithm numerically on synthetic data using several Sobolev norms as penalty term and apply it to real data. Sobolev
球形多壳脑电图问题的正则函数匹配追踪
. 通过脑电图(MEG)对磁通密度或脑电图(EEG)对电位差的非侵入性测量来重建人脑内的神经元电流是神经科学研究的宝贵工具,因为它提供了大脑活动的测量。然而,它也是一个严重不适定逆问题。在球形几何条件下,考虑球形多壳模型求解脑电信号和脑电信号逆问题,并应用正则化函数匹配追踪算法求解。给出了两个无限维Hilbert空间间算子的RFMP的收敛性证明。此外,我们利用脑电和脑磁数据的互补性,将电和磁同时测量的反演结合起来。最后,我们以若干Sobolev范数作为惩罚项在合成数据上对算法进行了数值测试,并将其应用于实际数据。水列夫
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信