Adaptive Neural Network Asymptotic Tracking Control for Autonomous Surface Vehicles

Yongchao Liu, Qingzhi Wang, Baozeng Fu
{"title":"Adaptive Neural Network Asymptotic Tracking Control for Autonomous Surface Vehicles","authors":"Yongchao Liu, Qingzhi Wang, Baozeng Fu","doi":"10.1109/ICPS58381.2023.10128025","DOIUrl":null,"url":null,"abstract":"In this paper, an adaptive neural network asymptotic tracking control method is presented for autonomous surface vehicles (ASV) with unknown uncertainties. In the control design, a smooth function is integrated into backstepping construction, which can achieve asymptotic convergence. The neural networks are borrowed to approximate the lumped nonlinear functions encompassing the unknown dynamics. It can be proved that the tracking errors of ASV can asymptotically converge to zero and all signals of the ASV closed-loop system are bounded. We offer simulation images to exhibit the validity of the devised asymptotic control method of ASV.","PeriodicalId":426122,"journal":{"name":"2023 IEEE 6th International Conference on Industrial Cyber-Physical Systems (ICPS)","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 6th International Conference on Industrial Cyber-Physical Systems (ICPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPS58381.2023.10128025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, an adaptive neural network asymptotic tracking control method is presented for autonomous surface vehicles (ASV) with unknown uncertainties. In the control design, a smooth function is integrated into backstepping construction, which can achieve asymptotic convergence. The neural networks are borrowed to approximate the lumped nonlinear functions encompassing the unknown dynamics. It can be proved that the tracking errors of ASV can asymptotically converge to zero and all signals of the ASV closed-loop system are bounded. We offer simulation images to exhibit the validity of the devised asymptotic control method of ASV.
自主地面车辆的自适应神经网络渐近跟踪控制
针对具有未知不确定性的自动水面车辆,提出了一种自适应神经网络渐近跟踪控制方法。在控制设计中,将光滑函数集成到反演构造中,使其能够渐近收敛。利用神经网络来逼近包含未知动力学的集总非线性函数。证明了ASV的跟踪误差可以渐近收敛于零,并且ASV闭环系统的所有信号都是有界的。我们提供了仿真图像来证明所设计的ASV渐近控制方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信