Learning the Kernel Matrix for Superresolution

K. Ni, Sanjeev Kumar, Truong Q. Nguyen
{"title":"Learning the Kernel Matrix for Superresolution","authors":"K. Ni, Sanjeev Kumar, Truong Q. Nguyen","doi":"10.1109/MMSP.2006.285347","DOIUrl":null,"url":null,"abstract":"This paper proposes the application of learned kernels in support vector regression to superresolution in the discrete cosine transform (DCT) domain. Though previous works involve kernel learning, their problem formulation is examined to reformulate the semi-definite programming problem of finding the optimal kernel matrix. For the particular application to superresolution, downsampling properties derived in the DCT domain are exploited to add structure to the learning algorithm. The advantage of the proposed method over other learning-based superresolution algorithms include specificity with regard to image content, structured consideration of energy compaction, and the added degrees of freedom that regression has over classification-based algorithms","PeriodicalId":267577,"journal":{"name":"2006 IEEE Workshop on Multimedia Signal Processing","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Workshop on Multimedia Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2006.285347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper proposes the application of learned kernels in support vector regression to superresolution in the discrete cosine transform (DCT) domain. Though previous works involve kernel learning, their problem formulation is examined to reformulate the semi-definite programming problem of finding the optimal kernel matrix. For the particular application to superresolution, downsampling properties derived in the DCT domain are exploited to add structure to the learning algorithm. The advantage of the proposed method over other learning-based superresolution algorithms include specificity with regard to image content, structured consideration of energy compaction, and the added degrees of freedom that regression has over classification-based algorithms
学习核矩阵的超分辨率
本文提出了在离散余弦变换(DCT)域超分辨率支持向量回归中学习核的应用。虽然以前的工作涉及核学习,但他们的问题表述被检查为重新表述寻找最优核矩阵的半确定规划问题。对于超分辨率的特殊应用,利用在DCT域中导出的下采样特性来增加学习算法的结构。与其他基于学习的超分辨率算法相比,所提出的方法的优点包括:对图像内容的专一性、对能量压缩的结构化考虑,以及回归相对于基于分类的算法所增加的自由度
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信