Low-Power Architectures for Spike Sorting

A. Zviagintsev, Y. Perelman, R. Ginosar
{"title":"Low-Power Architectures for Spike Sorting","authors":"A. Zviagintsev, Y. Perelman, R. Ginosar","doi":"10.1109/CNE.2005.1419579","DOIUrl":null,"url":null,"abstract":"Front-end integrated circuits for spike sorting will be useful in neuronal recording systems that engage a large number of electrodes. Detecting, sorting and encoding spike data at the front-end will reduce the data bandwidth and enable wireless communication. Without such data reduction, large data volumes need to be transferred to a host computer and typically heavy cables are required which constrain the patient or test animal. Front-end processing circuits must dissipate only a limited amount of power, due to supply constraints and heat restrictions. Two reduced complexity spike sorting algorithms are introduced, one based on integral transform and another on segmented PCA. The former achieves 98% of the precision of a PCA sorter, while requiring only 2.5% of the computational complexity. The latter algorithm is somewhat more accurate but incurs a higher complexity","PeriodicalId":113815,"journal":{"name":"Conference Proceedings. 2nd International IEEE EMBS Conference on Neural Engineering, 2005.","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"58","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Proceedings. 2nd International IEEE EMBS Conference on Neural Engineering, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNE.2005.1419579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 58

Abstract

Front-end integrated circuits for spike sorting will be useful in neuronal recording systems that engage a large number of electrodes. Detecting, sorting and encoding spike data at the front-end will reduce the data bandwidth and enable wireless communication. Without such data reduction, large data volumes need to be transferred to a host computer and typically heavy cables are required which constrain the patient or test animal. Front-end processing circuits must dissipate only a limited amount of power, due to supply constraints and heat restrictions. Two reduced complexity spike sorting algorithms are introduced, one based on integral transform and another on segmented PCA. The former achieves 98% of the precision of a PCA sorter, while requiring only 2.5% of the computational complexity. The latter algorithm is somewhat more accurate but incurs a higher complexity
尖峰排序的低功耗架构
用于尖峰排序的前端集成电路将在涉及大量电极的神经元记录系统中发挥作用。在前端检测、排序和编码尖峰数据将减少数据带宽并实现无线通信。如果没有这样的数据减少,就需要将大量数据传输到主机计算机,并且通常需要笨重的电缆,这将限制患者或试验动物。由于供应限制和散热限制,前端处理电路必须只耗散有限的功率。介绍了两种降低复杂度的尖峰排序算法,一种是基于积分变换的算法,另一种是基于分段PCA的算法。前者达到了PCA分类器98%的精度,而只需要2.5%的计算复杂度。后一种算法精度更高,但复杂度更高
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信