Robust Sparse Transfer Learning for Image Classification

Yuwu Lu, Wenjing Wang, Zhihui Lai
{"title":"Robust Sparse Transfer Learning for Image Classification","authors":"Yuwu Lu, Wenjing Wang, Zhihui Lai","doi":"10.1109/acait53529.2021.9731184","DOIUrl":null,"url":null,"abstract":"Transfer learning aims to transfer the knowledge learned from the source to the target data. However, noise-corrupted target data may limit the transfer learning capability. Thus, removing the noise in the data is essential to improve transfer learning performance. This paper proposes robust sparse transfer learning (RSTL) to improve the robustness of transfer learning. The RSTL uses noise-removed target domain data for project learning, where the employed nuclear norm ensures that the clean data matrix and the coefficient matrix are low-rank. The L norm is also adopted to ensure the sparsity of the target domain noise. Further, a reconstructive term is used, which aims to learn a reconstruction coefficient matrix. Extensive experimental evaluations on four datasets verify the promising ability of the proposed method compared with the other methods.","PeriodicalId":173633,"journal":{"name":"2021 5th Asian Conference on Artificial Intelligence Technology (ACAIT)","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 5th Asian Conference on Artificial Intelligence Technology (ACAIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/acait53529.2021.9731184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Transfer learning aims to transfer the knowledge learned from the source to the target data. However, noise-corrupted target data may limit the transfer learning capability. Thus, removing the noise in the data is essential to improve transfer learning performance. This paper proposes robust sparse transfer learning (RSTL) to improve the robustness of transfer learning. The RSTL uses noise-removed target domain data for project learning, where the employed nuclear norm ensures that the clean data matrix and the coefficient matrix are low-rank. The L norm is also adopted to ensure the sparsity of the target domain noise. Further, a reconstructive term is used, which aims to learn a reconstruction coefficient matrix. Extensive experimental evaluations on four datasets verify the promising ability of the proposed method compared with the other methods.
鲁棒稀疏迁移学习用于图像分类
迁移学习的目的是将从源数据中学习到的知识转移到目标数据中。然而,被噪声破坏的目标数据可能会限制迁移学习的能力。因此,去除数据中的噪声对于提高迁移学习性能至关重要。为了提高迁移学习的鲁棒性,本文提出了鲁棒稀疏迁移学习(RSTL)。RSTL采用去噪的目标域数据进行项目学习,采用核范数保证干净的数据矩阵和系数矩阵是低秩的。为了保证目标域噪声的稀疏性,采用了L范数。在此基础上,利用重构项来学习重构系数矩阵。在四个数据集上进行了大量的实验评估,与其他方法相比,验证了该方法的良好能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信