N. Andrianov, F. Amour, M. R. Hajiabadi, H. Nick, M. P. Haspang
{"title":"Coupled CO2 Injection Well Flow Model to Assess Thermal Stresses under Geomechanical Uncertainty","authors":"N. Andrianov, F. Amour, M. R. Hajiabadi, H. Nick, M. P. Haspang","doi":"10.2118/212235-ms","DOIUrl":null,"url":null,"abstract":"\n We develop a two-phase transient non-isothermal wellbore flow model, augmented with a radial heat conduction in the annulus, casing, and the reservoir. Using the available data for a saline aquifer in Denmark, we build a one-dimensional geomechanical well model and assess the stresses at the wellbore wall using the analytical Kirsch formula. Using the temperature at the wellbore wall, we calculate the corresponding thermal stresses. Furthermore, we assess the impact of the uncertainty in thermal expansion coefficients on the magnitudes of thermal stresses. For the cases considered, the magnitude of the changes in the critical pressure and in the fracture pressure with and without thermal stresses does not exceed 3%.","PeriodicalId":205933,"journal":{"name":"Day 2 Wed, March 29, 2023","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Wed, March 29, 2023","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/212235-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We develop a two-phase transient non-isothermal wellbore flow model, augmented with a radial heat conduction in the annulus, casing, and the reservoir. Using the available data for a saline aquifer in Denmark, we build a one-dimensional geomechanical well model and assess the stresses at the wellbore wall using the analytical Kirsch formula. Using the temperature at the wellbore wall, we calculate the corresponding thermal stresses. Furthermore, we assess the impact of the uncertainty in thermal expansion coefficients on the magnitudes of thermal stresses. For the cases considered, the magnitude of the changes in the critical pressure and in the fracture pressure with and without thermal stresses does not exceed 3%.