Rethinking Voxelization and Classification for 3D Object Detection

Youshaa Murhij, A. Golodkov, D. Yudin
{"title":"Rethinking Voxelization and Classification for 3D Object Detection","authors":"Youshaa Murhij, A. Golodkov, D. Yudin","doi":"10.48550/arXiv.2301.04058","DOIUrl":null,"url":null,"abstract":"The main challenge in 3D object detection from LiDAR point clouds is achieving real-time performance without affecting the reliability of the network. In other words, the detecting network must be confident enough about its predictions. In this paper, we present a solution to improve network inference speed and precision at the same time by implementing a fast dynamic voxelizer that works on fast pillar-based models in the same way a voxelizer works on slow voxel-based models. In addition, we propose a lightweight detection sub-head model for classifying predicted objects and filter out false detected objects that significantly improves model precision in a negligible time and computing cost. The developed code is publicly available at: https://github.com/YoushaaMurhij/RVCDet.","PeriodicalId":281152,"journal":{"name":"International Conference on Neural Information Processing","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Neural Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2301.04058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The main challenge in 3D object detection from LiDAR point clouds is achieving real-time performance without affecting the reliability of the network. In other words, the detecting network must be confident enough about its predictions. In this paper, we present a solution to improve network inference speed and precision at the same time by implementing a fast dynamic voxelizer that works on fast pillar-based models in the same way a voxelizer works on slow voxel-based models. In addition, we propose a lightweight detection sub-head model for classifying predicted objects and filter out false detected objects that significantly improves model precision in a negligible time and computing cost. The developed code is publicly available at: https://github.com/YoushaaMurhij/RVCDet.
三维目标检测中体素化与分类的再思考
从激光雷达点云进行3D目标检测的主要挑战是在不影响网络可靠性的情况下实现实时性能。换句话说,探测网络必须对它的预测有足够的信心。在本文中,我们提出了一种同时提高网络推理速度和精度的解决方案,通过实现快速动态体素化,该体素化以与慢速体素模型相同的方式工作于快速基于柱的模型。此外,我们提出了一种轻量级的检测子头部模型,用于对预测对象进行分类并过滤掉错误检测到的对象,从而在可忽略不计的时间和计算成本下显着提高了模型精度。开发的代码可以在https://github.com/YoushaaMurhij/RVCDet上公开获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信