Incremental kernel SVD for face recognition with image sets

Tat-Jun Chin, K. Schindler, D. Suter
{"title":"Incremental kernel SVD for face recognition with image sets","authors":"Tat-Jun Chin, K. Schindler, D. Suter","doi":"10.1109/FGR.2006.67","DOIUrl":null,"url":null,"abstract":"Non-linear subspaces derived using kernel methods have been found to be superior compared to linear subspaces in modeling or classification tasks of several visual phenomena. Such kernel methods include kernel PCA, kernel DA, kernel SVD and kernel QR. Since incremental computation algorithms for these methods do not exist yet, the practicality of these methods on large datasets or online video processing is minimal. We propose an approximate incremental kernel SVD algorithm for computer vision applications that require estimation of non-linear subspaces, specifically face recognition by matching image sets obtained through long-term observations or video recordings. We extend a well-known linear subspace updating algorithm to the nonlinear case by utilizing the kernel trick, and apply a reduced set construction method to produce sparse expressions for the derived subspace basis so as to maintain constant processing speed and memory usage. Experimental results demonstrate the effectiveness of the proposed method","PeriodicalId":109260,"journal":{"name":"7th International Conference on Automatic Face and Gesture Recognition (FGR06)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"62","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"7th International Conference on Automatic Face and Gesture Recognition (FGR06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FGR.2006.67","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 62

Abstract

Non-linear subspaces derived using kernel methods have been found to be superior compared to linear subspaces in modeling or classification tasks of several visual phenomena. Such kernel methods include kernel PCA, kernel DA, kernel SVD and kernel QR. Since incremental computation algorithms for these methods do not exist yet, the practicality of these methods on large datasets or online video processing is minimal. We propose an approximate incremental kernel SVD algorithm for computer vision applications that require estimation of non-linear subspaces, specifically face recognition by matching image sets obtained through long-term observations or video recordings. We extend a well-known linear subspace updating algorithm to the nonlinear case by utilizing the kernel trick, and apply a reduced set construction method to produce sparse expressions for the derived subspace basis so as to maintain constant processing speed and memory usage. Experimental results demonstrate the effectiveness of the proposed method
基于图像集的增量核奇异值分解人脸识别
利用核方法导出的非线性子空间在若干视觉现象的建模或分类任务中优于线性子空间。这些核方法包括核PCA、核DA、核SVD和核QR。由于这些方法的增量计算算法还不存在,这些方法在大型数据集或在线视频处理上的实用性很小。我们提出了一种近似增量核SVD算法,用于需要估计非线性子空间的计算机视觉应用,特别是通过匹配通过长期观察或视频记录获得的图像集来识别人脸。我们利用核技巧将一种著名的线性子空间更新算法扩展到非线性情况,并应用简化集构造方法对派生的子空间基产生稀疏表达式,以保持恒定的处理速度和内存使用。实验结果证明了该方法的有效性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信