PQR: Predicting Query Execution Times for Autonomous Workload Management

Chetan Gupta, Abhay Mehta, U. Dayal
{"title":"PQR: Predicting Query Execution Times for Autonomous Workload Management","authors":"Chetan Gupta, Abhay Mehta, U. Dayal","doi":"10.1109/ICAC.2008.12","DOIUrl":null,"url":null,"abstract":"Modern enterprise data warehouses have complex workloads that are notoriously difficult to manage. One of the key pieces to managing workloads is an estimate of how long a query will take to execute. An accurate estimate of this query execution time is critical to self managing Enterprise Class Data Warehouses. In this paper we study the problem of predicting the execution time of a query on a loaded data warehouse with a dynamically changing workload. We use a machine learning approach that takes the query plan, combines it with the observed load vector of the system and uses the new vector to predict the execution time of the query. The predictions are made as time ranges. We validate our solution using real databases and real workloads. We show experimentally that our machine learning approach works well. This technology is slated for incorporation into a commercial, enterprise class DBMS.","PeriodicalId":436716,"journal":{"name":"2008 International Conference on Autonomic Computing","volume":"55 8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"108","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Conference on Autonomic Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAC.2008.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 108

Abstract

Modern enterprise data warehouses have complex workloads that are notoriously difficult to manage. One of the key pieces to managing workloads is an estimate of how long a query will take to execute. An accurate estimate of this query execution time is critical to self managing Enterprise Class Data Warehouses. In this paper we study the problem of predicting the execution time of a query on a loaded data warehouse with a dynamically changing workload. We use a machine learning approach that takes the query plan, combines it with the observed load vector of the system and uses the new vector to predict the execution time of the query. The predictions are made as time ranges. We validate our solution using real databases and real workloads. We show experimentally that our machine learning approach works well. This technology is slated for incorporation into a commercial, enterprise class DBMS.
PQR:预测自主工作负载管理查询执行时间
现代企业数据仓库具有复杂的工作负载,非常难以管理。管理工作负载的关键部分之一是估计执行查询所需的时间。准确估计查询执行时间对于自我管理企业级数据仓库至关重要。在本文中,我们研究了在一个动态变化的负载数据仓库上预测查询执行时间的问题。我们使用一种机器学习方法,将查询计划与观察到的系统负载向量结合起来,并使用新的向量来预测查询的执行时间。预测是在时间范围内进行的。我们使用真实的数据库和真实的工作负载验证我们的解决方案。我们通过实验证明,我们的机器学习方法效果很好。该技术旨在整合到商业企业级DBMS中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信