ANALISIS GEOSTATISTIK UNTUK PEMETAAN PERUBAHAN KUALITAS AIR TANAH KAWASAN KARST KABUPATEN GUNUNGKIDUL

Herlina Herlina, D. Diyono
{"title":"ANALISIS GEOSTATISTIK UNTUK PEMETAAN PERUBAHAN KUALITAS AIR TANAH KAWASAN KARST KABUPATEN GUNUNGKIDUL","authors":"Herlina Herlina, D. Diyono","doi":"10.14710/elipsoida.2020.7762","DOIUrl":null,"url":null,"abstract":"Gunungkidul Regency has a karst area of approximately 807 km2 or 53% of the total area of its territory. There is a tendency for expansion in karst mining leading to a number of potentials, including damage to the water system which is a pollution of karst water sources. Temperature, turbidity, Total Dissolve Solid (TDS), PH, hardness, manganese, iron, and chloride are parameters affecting groundwater quality. Measurement of the concentration of each parameter is performed through a long process and expensive costs. Therefore, not all measurements are performed in the entire area of Gunungkidul. Hence, it is important to interpolate the eight parameters using the geostatistical method. Geostatistical kriging method is an estimation method that reduces the error of variance estimation by a cross-correlation between primary and secondary variables. The best semivariogram for a five-year period with the smallest RMSE value is the temperature in 2018 using an gaussian model, turbidity in 2018 using a IDW model, Total Dissolve Solid (TDS) in 2017 using a gaussian model, PH in 2016 using a linear exponential, hardness in 2019 using a exponential model, manganese in 2017 using a circular model, iron in 2017 using a exponential  model, and chlorides in 2015 using a RBF. Monitoring points of groundwater quality using these eight parameters have different variances so that five parameters are producing more than one RMSE value. To resolve this, besides comparing several interpolation methods, natural logarithmic transformations and the correlation of actual values with estimates were also performed. The correlation between the actual value and the estimation indicates that the estimation produced by the non-transformed data is more accurate than the transformed data. The estimated results of each parameter are visualized in the form of a map so that changes in groundwater quality every year can be seen. Besides the maps, the results of this study are shown in graphs of changes in the form of cross-sections of each parameter from 2015 to 2019. Visualization of changes in the quality level groundwater is expected to give input for relevant agencies in the conservation of water resources. Keywords:  Karst Mining, Mapping, Geostatistics, Groundwater Quality.","PeriodicalId":190139,"journal":{"name":"Elipsoida : Jurnal Geodesi dan Geomatika","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Elipsoida : Jurnal Geodesi dan Geomatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/elipsoida.2020.7762","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Gunungkidul Regency has a karst area of approximately 807 km2 or 53% of the total area of its territory. There is a tendency for expansion in karst mining leading to a number of potentials, including damage to the water system which is a pollution of karst water sources. Temperature, turbidity, Total Dissolve Solid (TDS), PH, hardness, manganese, iron, and chloride are parameters affecting groundwater quality. Measurement of the concentration of each parameter is performed through a long process and expensive costs. Therefore, not all measurements are performed in the entire area of Gunungkidul. Hence, it is important to interpolate the eight parameters using the geostatistical method. Geostatistical kriging method is an estimation method that reduces the error of variance estimation by a cross-correlation between primary and secondary variables. The best semivariogram for a five-year period with the smallest RMSE value is the temperature in 2018 using an gaussian model, turbidity in 2018 using a IDW model, Total Dissolve Solid (TDS) in 2017 using a gaussian model, PH in 2016 using a linear exponential, hardness in 2019 using a exponential model, manganese in 2017 using a circular model, iron in 2017 using a exponential  model, and chlorides in 2015 using a RBF. Monitoring points of groundwater quality using these eight parameters have different variances so that five parameters are producing more than one RMSE value. To resolve this, besides comparing several interpolation methods, natural logarithmic transformations and the correlation of actual values with estimates were also performed. The correlation between the actual value and the estimation indicates that the estimation produced by the non-transformed data is more accurate than the transformed data. The estimated results of each parameter are visualized in the form of a map so that changes in groundwater quality every year can be seen. Besides the maps, the results of this study are shown in graphs of changes in the form of cross-sections of each parameter from 2015 to 2019. Visualization of changes in the quality level groundwater is expected to give input for relevant agencies in the conservation of water resources. Keywords:  Karst Mining, Mapping, Geostatistics, Groundwater Quality.
Gunungkidul县的喀斯特面积约为807平方公里,占其领土总面积的53%。岩溶开采有扩大的趋势,导致了许多潜在的问题,其中包括对水系的破坏,这是对岩溶水源的污染。温度、浊度、总溶解固形物(TDS)、PH、硬度、锰、铁和氯化物是影响地下水水质的参数。测量每个参数的浓度是一个漫长的过程和昂贵的成本。因此,并非所有的测量都是在Gunungkidul的整个地区进行的。因此,用地质统计学方法插值这8个参数是很重要的。地质统计学克里格法是利用主、次变量之间的相互关系来减小方差估计误差的一种估计方法。RMSE值最小的五年期间最佳半变异函数是2018年(高斯模型)的温度、2018年(IDW模型)的浊度、2017年(高斯模型)的总溶解固体(TDS)、2016年(线性指数)的PH、2019年(指数模型)的硬度、2017年(圆形模型)的锰、2017年(指数模型)的铁和2015年(RBF)的氯化物。使用这8个参数的地下水水质监测点有不同的方差,使得5个参数产生的RMSE值大于1。为了解决这个问题,除了比较几种插值方法外,还进行了自然对数变换和实际值与估计值的相关性。实际值与估计值之间的相关性表明,由未转换的数据产生的估计比转换后的数据产生的估计更准确。每个参数的估计结果以地图的形式可视化,以便可以看到每年地下水质量的变化。除地图外,本研究结果以2015 - 2019年各参数截面形式的变化曲线图显示。地下水质量水平变化的可视化预计将为有关机构在保护水资源方面提供投入。关键词:岩溶开采;填图;地质统计学;
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信