Pump Fault Detection Using Autoencoding Neural Network

I. Vasiliev, L. Frangu, M. Cristea
{"title":"Pump Fault Detection Using Autoencoding Neural Network","authors":"I. Vasiliev, L. Frangu, M. Cristea","doi":"10.1109/ICSTCC55426.2022.9931848","DOIUrl":null,"url":null,"abstract":"This paper deals with the fault detection of centrifugal pumps, based on measured radial vibrations. The detection method compares the vibration signature of the equipment during normal behavior with the current recorded vibration signal. It raises an alarm if a distance function of the resulted residuum exceeds a predefined threshold. The normal signature and the threshold are learned through a machine learning procedure, based on autoencoding neural networks (NN). Two versions of NNs are trained and evaluated. The detection method proved to be reliable in an industrial application, even when using a single low-cost accelerometer for vibration sensing.","PeriodicalId":220845,"journal":{"name":"2022 26th International Conference on System Theory, Control and Computing (ICSTCC)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 26th International Conference on System Theory, Control and Computing (ICSTCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSTCC55426.2022.9931848","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper deals with the fault detection of centrifugal pumps, based on measured radial vibrations. The detection method compares the vibration signature of the equipment during normal behavior with the current recorded vibration signal. It raises an alarm if a distance function of the resulted residuum exceeds a predefined threshold. The normal signature and the threshold are learned through a machine learning procedure, based on autoencoding neural networks (NN). Two versions of NNs are trained and evaluated. The detection method proved to be reliable in an industrial application, even when using a single low-cost accelerometer for vibration sensing.
基于自编码神经网络的泵故障检测
本文研究了基于径向振动测量的离心泵故障检测方法。该检测方法将设备在正常运行时的振动特征与当前记录的振动信号进行比较。如果结果残差的距离函数超过预定义的阈值,则会发出警报。通过基于自动编码神经网络(NN)的机器学习过程学习正常签名和阈值。对两个版本的神经网络进行训练和评估。该检测方法在工业应用中证明是可靠的,即使使用单个低成本加速度计进行振动传感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信