A Large-scale RGB-D Database for Arbitrary-view Human Action Recognition

Yanli Ji, Feixiang Xu, Yang Yang, Fumin Shen, Heng Tao Shen, Weishi Zheng
{"title":"A Large-scale RGB-D Database for Arbitrary-view Human Action Recognition","authors":"Yanli Ji, Feixiang Xu, Yang Yang, Fumin Shen, Heng Tao Shen, Weishi Zheng","doi":"10.1145/3240508.3240675","DOIUrl":null,"url":null,"abstract":"Current researches mainly focus on single-view and multiview human action recognition, which can hardly satisfy the requirements of human-robot interaction (HRI) applications to recognize actions from arbitrary views. The lack of databases also sets up barriers. In this paper, we newly collect a large-scale RGB-D action database for arbitrary-view action analysis, including RGB videos, depth and skeleton sequences. The database includes action samples captured in 8 fixed viewpoints and varying-view sequences which covers the entire 360 view angles. In total, 118 persons are invited to act 40 action categories, and 25,600 video samples are collected. Our database involves more articipants, more viewpoints and a large number of samples. More importantly, it is the first database containing the entire 360? varying-view sequences. The database provides sufficient data for cross-view and arbitrary-view action analysis. Besides, we propose a View-guided Skeleton CNN (VS-CNN) to tackle the problem of arbitrary-view action recognition. Experiment results show that the VS-CNN achieves superior performance.","PeriodicalId":339857,"journal":{"name":"Proceedings of the 26th ACM international conference on Multimedia","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 26th ACM international conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3240508.3240675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 53

Abstract

Current researches mainly focus on single-view and multiview human action recognition, which can hardly satisfy the requirements of human-robot interaction (HRI) applications to recognize actions from arbitrary views. The lack of databases also sets up barriers. In this paper, we newly collect a large-scale RGB-D action database for arbitrary-view action analysis, including RGB videos, depth and skeleton sequences. The database includes action samples captured in 8 fixed viewpoints and varying-view sequences which covers the entire 360 view angles. In total, 118 persons are invited to act 40 action categories, and 25,600 video samples are collected. Our database involves more articipants, more viewpoints and a large number of samples. More importantly, it is the first database containing the entire 360? varying-view sequences. The database provides sufficient data for cross-view and arbitrary-view action analysis. Besides, we propose a View-guided Skeleton CNN (VS-CNN) to tackle the problem of arbitrary-view action recognition. Experiment results show that the VS-CNN achieves superior performance.
面向任意视图人体动作识别的大规模RGB-D数据库
目前的研究主要集中在单视图和多视图人体动作识别上,难以满足人机交互应用对任意视图动作识别的要求。数据库的缺乏也造成了障碍。在本文中,我们新收集了一个用于任意视图动作分析的大规模RGB- d动作数据库,包括RGB视频、深度和骨架序列。该数据库包括在8个固定视点和可变视点序列中捕获的动作样本,涵盖了整个360视角。总共邀请118人参与40个行动类别,并收集了25,600个视频样本。我们的数据库涉及更多的参与者,更多的观点和大量的样本。更重要的是,它是第一个包含整个360?varying-view序列。该数据库为跨视图和任意视图的动作分析提供了充足的数据。此外,我们提出了一种视点引导骨架CNN (VS-CNN)来解决任意视点动作识别问题。实验结果表明,VS-CNN具有较好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信