Construction of nilpotent Lie algebras over arbitrary fields

R. Beck, B. Kolman
{"title":"Construction of nilpotent Lie algebras over arbitrary fields","authors":"R. Beck, B. Kolman","doi":"10.1145/800206.806390","DOIUrl":null,"url":null,"abstract":"In this paper we present a general description of a computationally efficient algorithm for constructing every n-dimensional nilpotent Lie algebra as a central extension of a nilpotent Lie algebra of dimension less than n.\n As an application of the algorithm, we present a complete list of all real nilpotent six-dimensional Lie algebras. Since 1958, four such lists have been developed: namely, those of Morozov [2], Shedler [3], Vergne [5] and Skjelbred and Sund [4]. No two of these lists agree exactly. Our list resolves all the discrepancies in the other four lists. Moreover, it contains each earlier list as a subset.","PeriodicalId":314618,"journal":{"name":"Symposium on Symbolic and Algebraic Manipulation","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1981-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposium on Symbolic and Algebraic Manipulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/800206.806390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

In this paper we present a general description of a computationally efficient algorithm for constructing every n-dimensional nilpotent Lie algebra as a central extension of a nilpotent Lie algebra of dimension less than n. As an application of the algorithm, we present a complete list of all real nilpotent six-dimensional Lie algebras. Since 1958, four such lists have been developed: namely, those of Morozov [2], Shedler [3], Vergne [5] and Skjelbred and Sund [4]. No two of these lists agree exactly. Our list resolves all the discrepancies in the other four lists. Moreover, it contains each earlier list as a subset.
任意域上幂零李代数的构造
本文给出了构造一个n维幂零李代数作为维数小于n的幂零李代数的中心扩展的计算效率算法的一般描述。作为该算法的一个应用,我们给出了所有实数幂零六维李代数的完整列表。自1958年以来,Morozov[2]、Shedler[3]、Vergne[5]、Skjelbred and Sund[4]等四种名单相继问世。没有哪两个列表完全一致。我们的清单解决了其他四个清单中的所有差异。此外,它将每个早期列表作为子集包含。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信