Hao Wang, C. Liu, Zipeng Dai, Jian Tang, Guoren Wang
{"title":"Energy-Efficient 3D Vehicular Crowdsourcing for Disaster Response by Distributed Deep Reinforcement Learning","authors":"Hao Wang, C. Liu, Zipeng Dai, Jian Tang, Guoren Wang","doi":"10.1145/3447548.3467070","DOIUrl":null,"url":null,"abstract":"Fast and efficient access to environmental and life data is key to the successful disaster response. Vehicular crowdsourcing (VC) by a group of unmanned vehicles (UVs) like drones and unmanned ground vehicles to collect these data from Point-of-Interests (PoIs) e.g., possible survivor spots and fire site, provides an efficient way to assist disaster rescue. In this paper, we explicitly consider to navigate a group of UVs in a 3-dimensional (3D) disaster workzone to maximize the amount of collected data, geographical fairness, energy efficiency, while minimizing data dropout due to limited transmission rate. We propose DRL-DisasterVC(3D), a distributed deep reinforcement learning framework, with a repetitive experience replay (RER) to improve learning efficiency, and a clipped target network to increase learning stability. We also use a 3D convolutional neural network (3D CNN) with multi-head-relational attention (MHRA) for spatial modeling, and add auxiliary pixel control (PC) for spatial exploration. We designed a novel disaster response simulator, called \"DisasterSim\", and conduct extensive experiments to show that DRL-DisasterVC(3D) outperforms all five baselines in terms of energy efficiency when varying the numbers of UVs, PoIs and SNR threshold.","PeriodicalId":421090,"journal":{"name":"Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3447548.3467070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
Fast and efficient access to environmental and life data is key to the successful disaster response. Vehicular crowdsourcing (VC) by a group of unmanned vehicles (UVs) like drones and unmanned ground vehicles to collect these data from Point-of-Interests (PoIs) e.g., possible survivor spots and fire site, provides an efficient way to assist disaster rescue. In this paper, we explicitly consider to navigate a group of UVs in a 3-dimensional (3D) disaster workzone to maximize the amount of collected data, geographical fairness, energy efficiency, while minimizing data dropout due to limited transmission rate. We propose DRL-DisasterVC(3D), a distributed deep reinforcement learning framework, with a repetitive experience replay (RER) to improve learning efficiency, and a clipped target network to increase learning stability. We also use a 3D convolutional neural network (3D CNN) with multi-head-relational attention (MHRA) for spatial modeling, and add auxiliary pixel control (PC) for spatial exploration. We designed a novel disaster response simulator, called "DisasterSim", and conduct extensive experiments to show that DRL-DisasterVC(3D) outperforms all five baselines in terms of energy efficiency when varying the numbers of UVs, PoIs and SNR threshold.