Local and global Gaussian mixture models for hematoxylin and eosin stained histology image segmentation

Lei He, L. Long, Sameer Kiran Antani, G. Thoma
{"title":"Local and global Gaussian mixture models for hematoxylin and eosin stained histology image segmentation","authors":"Lei He, L. Long, Sameer Kiran Antani, G. Thoma","doi":"10.1109/HIS.2010.5600019","DOIUrl":null,"url":null,"abstract":"This paper presents a new algorithm for hematoxylin and eosin (H&E) stained histology image segmentation. With both local and global clustering, Gaussian mixture models (GMMs) are applied sequentially to extract tissue constituents such as nuclei, stroma, and connecting contents from background. Specifically, local GMM is firstly applied to detect nuclei by scanning the input image, which is followed by global GMM to separate other tissue constituents from background. Regular RGB (red, green and blue) color space is employed individually for the local and global GMMs to make use of the H&E staining features. Experiments on a set of cervix histology images show the improved performance of the proposed algorithm when compared with traditional K-means clustering and state-of-art multiphase level set methods.","PeriodicalId":174618,"journal":{"name":"2010 10th International Conference on Hybrid Intelligent Systems","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 10th International Conference on Hybrid Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HIS.2010.5600019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

This paper presents a new algorithm for hematoxylin and eosin (H&E) stained histology image segmentation. With both local and global clustering, Gaussian mixture models (GMMs) are applied sequentially to extract tissue constituents such as nuclei, stroma, and connecting contents from background. Specifically, local GMM is firstly applied to detect nuclei by scanning the input image, which is followed by global GMM to separate other tissue constituents from background. Regular RGB (red, green and blue) color space is employed individually for the local and global GMMs to make use of the H&E staining features. Experiments on a set of cervix histology images show the improved performance of the proposed algorithm when compared with traditional K-means clustering and state-of-art multiphase level set methods.
苏木精和伊红染色组织图像分割的局部和全局高斯混合模型
提出了一种新的苏木精和伊红染色组织图像分割算法。采用局部聚类和全局聚类两种方法,依次应用高斯混合模型从背景中提取组织成分,如细胞核、基质和连接内容。具体来说,首先利用局部GMM扫描输入图像来检测细胞核,然后利用全局GMM从背景中分离出其他组织成分。常规的RGB(红、绿、蓝)色彩空间分别用于局部和全局GMMs,以利用H&E染色特征。在一组宫颈组织学图像上的实验表明,与传统的k均值聚类方法和最先进的多相水平集方法相比,该算法的性能有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信