Deriving optimal data distributions for group parallel numerical algorithms

T. Rauber, G. Runger, R. Wilhelm
{"title":"Deriving optimal data distributions for group parallel numerical algorithms","authors":"T. Rauber, G. Runger, R. Wilhelm","doi":"10.1109/PMMPC.1995.504339","DOIUrl":null,"url":null,"abstract":"Numerical algorithms often exhibit potential parallelism caused by a coarse structure of submethods in addition to the medium grain parallelism of systems within submethods. We present a derivation methodology for parallel programs of numerical methods on distributed memory machines that exploits both levels of parallelism in a group-SPMD parallel computation model. The derivation process starts with a specification of the numerical method in a module structure of submethods, and results in a parallel frame program containing all implementation decisions of the parallel implementation. The implementation derivation includes scheduling of modules, assigning processors to modules and choosing data distributions for basic modules. The methodology eases parallel programming and supplies a formal basis for automatic support. An analysis model allows performance predictions for parallel frame programs. In this article we concentrate on the determination of optimal data distributions using a dynamic programming approach based on data distribution types and incomplete run-time formulas.","PeriodicalId":344246,"journal":{"name":"Programming Models for Massively Parallel Computers","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Programming Models for Massively Parallel Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PMMPC.1995.504339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Numerical algorithms often exhibit potential parallelism caused by a coarse structure of submethods in addition to the medium grain parallelism of systems within submethods. We present a derivation methodology for parallel programs of numerical methods on distributed memory machines that exploits both levels of parallelism in a group-SPMD parallel computation model. The derivation process starts with a specification of the numerical method in a module structure of submethods, and results in a parallel frame program containing all implementation decisions of the parallel implementation. The implementation derivation includes scheduling of modules, assigning processors to modules and choosing data distributions for basic modules. The methodology eases parallel programming and supplies a formal basis for automatic support. An analysis model allows performance predictions for parallel frame programs. In this article we concentrate on the determination of optimal data distributions using a dynamic programming approach based on data distribution types and incomplete run-time formulas.
群并行数值算法的最优数据分布
除了子方法内系统的中等粒度并行性外,数值算法还经常表现出由子方法的粗结构引起的潜在并行性。我们提出了一种分布式存储机器上的数值方法并行程序的推导方法,该方法利用了群- spmd并行计算模型中的两个并行级别。推导过程从子方法模块结构的数值方法规范开始,得到包含并行实现的所有实现决策的并行框架程序。实现派生包括模块调度、为模块分配处理器和为基本模块选择数据分布。该方法简化了并行编程,并为自动支持提供了正式的基础。分析模型允许对并行帧程序进行性能预测。在本文中,我们将集中讨论使用基于数据分布类型和不完整运行时公式的动态规划方法确定最佳数据分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信