CQIG: An Improved Web Search Results Clustering Algorithm

Yong-gong Ren, Dan Fan
{"title":"CQIG: An Improved Web Search Results Clustering Algorithm","authors":"Yong-gong Ren, Dan Fan","doi":"10.1109/WISA.2010.36","DOIUrl":null,"url":null,"abstract":"Massive linear search results returned from traditional search engines bring much inconvenience to users when extract the information they need. Search result clustering is of critical need for grouping similar topics of documents. The existing algorithm has drawbacks in clustering labels screening, cluster quality assessment, overlapping clusters controlling. The improved clustering algorithm-CQIG, which based on LINGO, improved the cluster and cluster label scoring function, increased the cluster merging process and improved the processing effect of Chinese. Finally, a recommended platform for Web search results clustering is established based on carrot2 framework to prove the accuracy, distinction and readability of CQIG.","PeriodicalId":122827,"journal":{"name":"2010 Seventh Web Information Systems and Applications Conference","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Seventh Web Information Systems and Applications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WISA.2010.36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Massive linear search results returned from traditional search engines bring much inconvenience to users when extract the information they need. Search result clustering is of critical need for grouping similar topics of documents. The existing algorithm has drawbacks in clustering labels screening, cluster quality assessment, overlapping clusters controlling. The improved clustering algorithm-CQIG, which based on LINGO, improved the cluster and cluster label scoring function, increased the cluster merging process and improved the processing effect of Chinese. Finally, a recommended platform for Web search results clustering is established based on carrot2 framework to prove the accuracy, distinction and readability of CQIG.
一种改进的网络搜索结果聚类算法
传统搜索引擎返回的海量线性搜索结果给用户提取所需信息带来诸多不便。搜索结果聚类是对文档相似主题进行分组的关键。现有算法在聚类标签筛选、聚类质量评估、重叠聚类控制等方面存在不足。基于LINGO的改进聚类算法cqig改进了聚类和聚类标签评分功能,增加了聚类合并过程,提高了中文的处理效果。最后,基于carrot2框架建立了一个Web搜索结果聚类推荐平台,验证了CQIG的准确性、区分性和可读性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信