Integration of heterogeneous classifiers for intrusion detection

Yong Zhang, Linjie Zhu
{"title":"Integration of heterogeneous classifiers for intrusion detection","authors":"Yong Zhang, Linjie Zhu","doi":"10.1109/ICACTE.2010.5579129","DOIUrl":null,"url":null,"abstract":"To address the problem of less rare data and low detection accuracy, The paper proposes a heterogeneous classifier integrated by the random forests, support vector machines, clustering and Bayesian classifier to increase the detecting accuracy of rare class, and to detect rare class with the greatest weighted voting. Experimental results show that utilizing integration of heterogeneous classifiers in intrusion detection system can improve obviously detection precision and decrease false positive rate.","PeriodicalId":255806,"journal":{"name":"2010 3rd International Conference on Advanced Computer Theory and Engineering(ICACTE)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 3rd International Conference on Advanced Computer Theory and Engineering(ICACTE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACTE.2010.5579129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

To address the problem of less rare data and low detection accuracy, The paper proposes a heterogeneous classifier integrated by the random forests, support vector machines, clustering and Bayesian classifier to increase the detecting accuracy of rare class, and to detect rare class with the greatest weighted voting. Experimental results show that utilizing integration of heterogeneous classifiers in intrusion detection system can improve obviously detection precision and decrease false positive rate.
集成异构分类器的入侵检测
为了解决稀有数据少、检测准确率低的问题,本文提出了一种由随机森林、支持向量机、聚类和贝叶斯分类器集成的异构分类器,以提高稀有类的检测准确率,并以最大的加权投票来检测稀有类。实验结果表明,将异构分类器集成到入侵检测系统中,可以明显提高检测精度,降低误报率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信