A Bayesian methodology for visual object tracking on stereo sequences

G. Chantas, N. Nikolaidis, I. Pitas
{"title":"A Bayesian methodology for visual object tracking on stereo sequences","authors":"G. Chantas, N. Nikolaidis, I. Pitas","doi":"10.1109/IVMSPW.2013.6611932","DOIUrl":null,"url":null,"abstract":"A general Bayesian post-processing methodology for performance improvement of object tracking in stereo video sequences is proposed in this paper. We utilize the results of any single channel visual object tracker in a Bayesian framework, in order to refine the tracking accuracy in both stereo video channels. In this framework, a variational Bayesian algorithm is employed, where prior knowledge about the object displacement (movement) is incorporated via a prior distribution. This displacement information is obtained in a preprocessing step, where object displacement is estimated via feature extraction and matching. In parallel, disparity information is extracted and utilized in the same framework. The improvements introduced by the proposed methodology in terms of tracking accuracy are quantified through experimental analysis.","PeriodicalId":170714,"journal":{"name":"IVMSP 2013","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IVMSP 2013","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVMSPW.2013.6611932","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

A general Bayesian post-processing methodology for performance improvement of object tracking in stereo video sequences is proposed in this paper. We utilize the results of any single channel visual object tracker in a Bayesian framework, in order to refine the tracking accuracy in both stereo video channels. In this framework, a variational Bayesian algorithm is employed, where prior knowledge about the object displacement (movement) is incorporated via a prior distribution. This displacement information is obtained in a preprocessing step, where object displacement is estimated via feature extraction and matching. In parallel, disparity information is extracted and utilized in the same framework. The improvements introduced by the proposed methodology in terms of tracking accuracy are quantified through experimental analysis.
基于贝叶斯方法的立体序列视觉目标跟踪
提出了一种提高立体视频序列中目标跟踪性能的通用贝叶斯后处理方法。我们在贝叶斯框架中利用任何单通道视觉目标跟踪器的结果,以改进两个立体视频通道的跟踪精度。在该框架中,采用了变分贝叶斯算法,其中通过先验分布合并了关于物体位移(运动)的先验知识。该位移信息在预处理步骤中获得,其中通过特征提取和匹配估计物体位移。同时,视差信息在同一框架中提取和利用。通过实验分析,量化了该方法在跟踪精度方面的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信