Chaos in Matrix Gauge Theories with Massive Deformations

K. Bacskan, S. Kurkccuovglu, O. Oktay, C. Tacsci
{"title":"Chaos in Matrix Gauge Theories with Massive Deformations","authors":"K. Bacskan, S. Kurkccuovglu, O. Oktay, C. Tacsci","doi":"10.22323/1.406.0294","DOIUrl":null,"url":null,"abstract":"Starting from an 𝑆𝑈 ( 𝑁 ) matrix quantum mechanics model with massive deformation terms and by introducing an ansatz configuration involving fuzzy four- and two-spheres with collective time dependence, we obtain a family of effective Hamiltonians, 𝐻 𝑛 , ( 𝑁 = 16 ( 𝑛 + 1 )( 𝑛 + 2 )( 𝑛 + 3 )) and examine their emerging chaotic dynamics. Through numerical work, we model the variation of the largest Lyapunov exponents as a function of the energy and find that they vary either as ∝ ( 𝐸 − ( 𝐸 𝑛 ) 𝐹 ) 1 / 4 or ∝ 𝐸 1 / 4 , where ( 𝐸 𝑛 ) 𝐹 stand for the energies of the unstable fixed points of the phase space. We use our results to put upper bounds on the temperature above which the Lyapunov exponents comply with the Maldacena-Shenker-Stanford (MSS) bound, 2 𝜋𝑇 , and below which it will eventually be violated.","PeriodicalId":131792,"journal":{"name":"Proceedings of Corfu Summer Institute 2021 \"School and Workshops on Elementary Particle Physics and Gravity\" — PoS(CORFU2021)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Corfu Summer Institute 2021 \"School and Workshops on Elementary Particle Physics and Gravity\" — PoS(CORFU2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.406.0294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Starting from an 𝑆𝑈 ( 𝑁 ) matrix quantum mechanics model with massive deformation terms and by introducing an ansatz configuration involving fuzzy four- and two-spheres with collective time dependence, we obtain a family of effective Hamiltonians, 𝐻 𝑛 , ( 𝑁 = 16 ( 𝑛 + 1 )( 𝑛 + 2 )( 𝑛 + 3 )) and examine their emerging chaotic dynamics. Through numerical work, we model the variation of the largest Lyapunov exponents as a function of the energy and find that they vary either as ∝ ( 𝐸 − ( 𝐸 𝑛 ) 𝐹 ) 1 / 4 or ∝ 𝐸 1 / 4 , where ( 𝐸 𝑛 ) 𝐹 stand for the energies of the unstable fixed points of the phase space. We use our results to put upper bounds on the temperature above which the Lyapunov exponents comply with the Maldacena-Shenker-Stanford (MSS) bound, 2 𝜋𝑇 , and below which it will eventually be violated.
具有大量变形的矩阵规范理论中的混沌
从具有大量变形项的𝑆𝑈()矩阵量子力学模型出发,通过引入具有集体时间依赖的模糊四球和二球的ansatz组态,我们得到了有效哈密顿量𝐻𝑛,(= 16(𝑛+ 1)(𝑛+ 2)(𝑛+ 3)),并研究了它们出现的混沌动力学。通过数值计算,我们将最大Lyapunov指数的变化建模为能量的函数,并发现它们的变化形式为∝( -(𝑛)) 1 / 4或∝ 1 / 4,其中(𝑛)表示相空间不稳定不动点的能量。我们用我们的结果给出了温度的上界,在这个上界上,李雅普诺夫指数符合Maldacena-Shenker-Stanford (MSS)界2,低于这个上界,它最终将被打破。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信