Visual industrial inspection using aerial robots

Sammy Omari, Pascal Gohl, M. Burri, Markus Achtelik, R. Siegwart
{"title":"Visual industrial inspection using aerial robots","authors":"Sammy Omari, Pascal Gohl, M. Burri, Markus Achtelik, R. Siegwart","doi":"10.1109/CARPI.2014.7030056","DOIUrl":null,"url":null,"abstract":"The use of unmanned aerial vehicles (UAV) offers a unique possibility to capture visual information in areas which are hard to reach or dangerous for humans. For UAVs to become a standard tool in visual inspection, it is of utmost importance that the aerial robot can be operated efficiently by a non-expert UAV pilot and that the navigation system is robust enough to remain operational in rough, industrial conditions. To this end, we present a UAV navigation system setup that uses visual-inertial sensor cues to estimate the UAV pose as well as to create a dense 3D map of the environment in real-time onboard the UAV, completely independent of GPS. The proposed navigation system enables the operator to directly interface the UAV using high-level commands such as waypoints or velocity commands while the navigation system ensures a stable and collision-free flight.","PeriodicalId":346429,"journal":{"name":"Proceedings of the 2014 3rd International Conference on Applied Robotics for the Power Industry","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2014 3rd International Conference on Applied Robotics for the Power Industry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CARPI.2014.7030056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49

Abstract

The use of unmanned aerial vehicles (UAV) offers a unique possibility to capture visual information in areas which are hard to reach or dangerous for humans. For UAVs to become a standard tool in visual inspection, it is of utmost importance that the aerial robot can be operated efficiently by a non-expert UAV pilot and that the navigation system is robust enough to remain operational in rough, industrial conditions. To this end, we present a UAV navigation system setup that uses visual-inertial sensor cues to estimate the UAV pose as well as to create a dense 3D map of the environment in real-time onboard the UAV, completely independent of GPS. The proposed navigation system enables the operator to directly interface the UAV using high-level commands such as waypoints or velocity commands while the navigation system ensures a stable and collision-free flight.
使用空中机器人的视觉工业检测
无人驾驶飞行器(UAV)的使用提供了一种独特的可能性,可以在人类难以到达或危险的区域捕获视觉信息。为了使无人机成为视觉检测的标准工具,至关重要的是,空中机器人可以由非专业无人机飞行员有效操作,并且导航系统足够强大,可以在恶劣的工业条件下保持运行。为此,我们提出了一种无人机导航系统设置,该系统使用视觉惯性传感器提示来估计无人机姿态,并在无人机上实时创建密集的3D环境地图,完全独立于GPS。拟议的导航系统使操作员能够使用高级命令(如航路点或速度命令)直接与无人机接口,同时导航系统确保稳定和无碰撞飞行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信