Robust recovery of wideband block-sparse spectrum based on MAP and MMSE estimator

Jia Li, Qiang Wang, Jiayan Qiu, Cong Dong
{"title":"Robust recovery of wideband block-sparse spectrum based on MAP and MMSE estimator","authors":"Jia Li, Qiang Wang, Jiayan Qiu, Cong Dong","doi":"10.1109/I2MTC.2015.7151551","DOIUrl":null,"url":null,"abstract":"Indirect spectrum sensing mainly concerns the measurement and analysis of primary wideband analog signal. This paper proposes two robust algorithms based on maximum a-posteriori probability (MAP) and minimum mean-squared error (MMSE) estimators to recover wideband block-sparse spectrum and then detect the spectrum holes in compressive spectrum sensing (CSS). In each iteration of the referred Block-sparse Orthogonal Matching Pursuit based on iterative MAP (BOMP-IMAP) algorithm, one index of block is firstly identified to expand the estimated support. And then, wideband block-sparse spectrum can be recovered through approximating the MAP estimator. Finally, the residual is updated and put into next iteration. In order to approximate the MMSE estimator, the Random BOMP-IMAP (RandBOMP-IMAP) algorithm utilizes a randomized block identification of BOMP-IMAP algorithm to generate multiple solutions, which is followed by the fusion of them to obtain the final approximation. Numerical simulation results concerning probability of detection and detection time under certain noise level or measurement number validate the superiority of the proposed algorithms.","PeriodicalId":424006,"journal":{"name":"2015 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I2MTC.2015.7151551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Indirect spectrum sensing mainly concerns the measurement and analysis of primary wideband analog signal. This paper proposes two robust algorithms based on maximum a-posteriori probability (MAP) and minimum mean-squared error (MMSE) estimators to recover wideband block-sparse spectrum and then detect the spectrum holes in compressive spectrum sensing (CSS). In each iteration of the referred Block-sparse Orthogonal Matching Pursuit based on iterative MAP (BOMP-IMAP) algorithm, one index of block is firstly identified to expand the estimated support. And then, wideband block-sparse spectrum can be recovered through approximating the MAP estimator. Finally, the residual is updated and put into next iteration. In order to approximate the MMSE estimator, the Random BOMP-IMAP (RandBOMP-IMAP) algorithm utilizes a randomized block identification of BOMP-IMAP algorithm to generate multiple solutions, which is followed by the fusion of them to obtain the final approximation. Numerical simulation results concerning probability of detection and detection time under certain noise level or measurement number validate the superiority of the proposed algorithms.
基于MAP和MMSE估计的宽带块稀疏频谱鲁棒恢复
间接频谱感知主要涉及对宽带模拟信号的测量和分析。本文提出了两种基于最大后验概率(MAP)和最小均方误差(MMSE)估计的鲁棒算法,用于恢复宽带块稀疏频谱并检测压缩频谱感知(CSS)中的频谱漏洞。在引用的基于迭代MAP (BOMP-IMAP)算法的块稀疏正交匹配追踪的每次迭代中,首先识别一个块索引以扩大估计支持度。然后,通过近似MAP估计器恢复宽带块稀疏频谱。最后,对残差进行更新并放入下一次迭代中。为了逼近MMSE估计量,Random BOMP-IMAP (RandBOMP-IMAP)算法利用BOMP-IMAP算法的随机块识别来生成多个解,然后将它们融合以获得最终的逼近。在一定噪声水平或测量次数下的检测概率和检测时间的数值仿真结果验证了所提算法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信