A Demonstration of GeoTorchAI: A Spatiotemporal Deep Learning Framework

Kanchan Chowdhury, Mohamed Sarwat
{"title":"A Demonstration of GeoTorchAI: A Spatiotemporal Deep Learning Framework","authors":"Kanchan Chowdhury, Mohamed Sarwat","doi":"10.1145/3555041.3589734","DOIUrl":null,"url":null,"abstract":"This paper demonstrates GeoTorchAI, a spatiotemporal deep learning framework. In recent years, many neural network models have been proposed focusing on the applications of raster imagery and spatiotemporal non-imagery datasets. Implementing these models using existing deep learning frameworks, such as PyTorch and TensorFlow, requires nontrivial coding efforts from the developers because these models differ extensively from state-of-the-art models supported by existing deep learning frameworks. Moreover, existing deep learning frameworks lack the support for scalable data preprocessing, a mandatory step for converting spatiotemporal datasets into trainable tensors. GeoTorchAI enables machine learning practitioners to implement spatiotemporal deep learning models with minimum coding efforts on top of PyTorch. It provides state-of-the-art neural network models, ready-to-use benchmark datasets, and transformation operations for raster imagery and spatiotemporal non-imagery datasets. Besides deep learning, GeoTorchAI contains a data preprocessing module that allows preparing trainable spatiotemporal vector datasets and the transformation of raster images in a cluster computing setting.","PeriodicalId":161812,"journal":{"name":"Companion of the 2023 International Conference on Management of Data","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion of the 2023 International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3555041.3589734","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper demonstrates GeoTorchAI, a spatiotemporal deep learning framework. In recent years, many neural network models have been proposed focusing on the applications of raster imagery and spatiotemporal non-imagery datasets. Implementing these models using existing deep learning frameworks, such as PyTorch and TensorFlow, requires nontrivial coding efforts from the developers because these models differ extensively from state-of-the-art models supported by existing deep learning frameworks. Moreover, existing deep learning frameworks lack the support for scalable data preprocessing, a mandatory step for converting spatiotemporal datasets into trainable tensors. GeoTorchAI enables machine learning practitioners to implement spatiotemporal deep learning models with minimum coding efforts on top of PyTorch. It provides state-of-the-art neural network models, ready-to-use benchmark datasets, and transformation operations for raster imagery and spatiotemporal non-imagery datasets. Besides deep learning, GeoTorchAI contains a data preprocessing module that allows preparing trainable spatiotemporal vector datasets and the transformation of raster images in a cluster computing setting.
GeoTorchAI的演示:一个时空深度学习框架
本文展示了GeoTorchAI,一个时空深度学习框架。近年来,针对栅格图像和时空非图像数据集的应用,提出了许多神经网络模型。使用现有的深度学习框架(如PyTorch和TensorFlow)实现这些模型需要开发人员进行大量的编码工作,因为这些模型与现有深度学习框架支持的最先进的模型有很大的不同。此外,现有的深度学习框架缺乏对可扩展数据预处理的支持,而可扩展数据预处理是将时空数据集转换为可训练张量的必要步骤。GeoTorchAI使机器学习从业者能够在PyTorch上以最少的编码工作量实现时空深度学习模型。它提供最先进的神经网络模型、现成的基准数据集,以及光栅图像和时空非图像数据集的转换操作。除了深度学习,GeoTorchAI还包含一个数据预处理模块,允许在集群计算设置中准备可训练的时空矢量数据集和光栅图像转换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信