Monitoring global vegetation with the Yearly Land Cover Dynamics (YLCD) method

Y. Julien, J. Sobrino
{"title":"Monitoring global vegetation with the Yearly Land Cover Dynamics (YLCD) method","authors":"Y. Julien, J. Sobrino","doi":"10.1109/MULTI-TEMP.2011.6005063","DOIUrl":null,"url":null,"abstract":"Global vegetation has been traditionally monitored mainly through the use of the Normalized Difference Vegetation Index (NDVI). Land surface temperature (LST) provides additional information, and is generally less affected by atmospheric conditions when water vapor is taken into account. The Yearly Land Cover Dynamics (YLCD) method can then be used to retrieve 3 parameters which allow for a good differentiation between biomes at the global and local levels. Using NASA's Long Term Data Record (LTDR), the YLCD method has been applied to IDR (iterative Interpolation for Data Reconstruction) reconstructed LTDR data, in order to account for atmospheric contamination of part of the dataset for a few selected pixels. The evolution of the retrieved YLCD parameters is monitored throughout the 20-year span of the LTDR dataset.","PeriodicalId":254778,"journal":{"name":"2011 6th International Workshop on the Analysis of Multi-temporal Remote Sensing Images (Multi-Temp)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 6th International Workshop on the Analysis of Multi-temporal Remote Sensing Images (Multi-Temp)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MULTI-TEMP.2011.6005063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Global vegetation has been traditionally monitored mainly through the use of the Normalized Difference Vegetation Index (NDVI). Land surface temperature (LST) provides additional information, and is generally less affected by atmospheric conditions when water vapor is taken into account. The Yearly Land Cover Dynamics (YLCD) method can then be used to retrieve 3 parameters which allow for a good differentiation between biomes at the global and local levels. Using NASA's Long Term Data Record (LTDR), the YLCD method has been applied to IDR (iterative Interpolation for Data Reconstruction) reconstructed LTDR data, in order to account for atmospheric contamination of part of the dataset for a few selected pixels. The evolution of the retrieved YLCD parameters is monitored throughout the 20-year span of the LTDR dataset.
利用年度土地覆盖动态(YLCD)方法监测全球植被
全球植被监测传统上主要通过使用归一化植被指数(NDVI)。地表温度(LST)提供了额外的信息,当考虑到水蒸气时,地表温度通常受大气条件的影响较小。每年土地覆盖动态(YLCD)方法可用于检索3个参数,这些参数允许在全球和地方水平上很好地区分生物群落。使用NASA的长期数据记录(LTDR), YLCD方法已被应用于IDR(迭代插值数据重建)重建的LTDR数据,以解释部分数据集对几个选定像素的大气污染。在LTDR数据集的20年跨度内监测检索到的YLCD参数的演变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信