Multi-source named entity typing for social media

NEWS@ACM Pub Date : 2016-08-01 DOI:10.18653/v1/W16-2702
R. Vexler, Einat Minkov
{"title":"Multi-source named entity typing for social media","authors":"R. Vexler, Einat Minkov","doi":"10.18653/v1/W16-2702","DOIUrl":null,"url":null,"abstract":"Typed lexicons that encode knowledge about the semantic types of an entity name, e.g., that ‘Paris’ denotes a geolocation, product, or person, have proven useful for many text processing tasks. While lexicons may be derived from large-scale knowledge bases (KBs), KBs are inherently imperfect, in particular they lack coverage with respect to long tail entity names. We infer the types of a given entity name using multi-source learning, considering information obtained by alignment to the Freebase knowledge base, Web-scale distributional patterns, and global semi-structured contexts retrieved by means of Web search. Evaluation in the challenging domain of social media shows that multi-source learning improves performance compared with rule-based KB lookups, boosting typing results for some semantic categories.","PeriodicalId":254249,"journal":{"name":"NEWS@ACM","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NEWS@ACM","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W16-2702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Typed lexicons that encode knowledge about the semantic types of an entity name, e.g., that ‘Paris’ denotes a geolocation, product, or person, have proven useful for many text processing tasks. While lexicons may be derived from large-scale knowledge bases (KBs), KBs are inherently imperfect, in particular they lack coverage with respect to long tail entity names. We infer the types of a given entity name using multi-source learning, considering information obtained by alignment to the Freebase knowledge base, Web-scale distributional patterns, and global semi-structured contexts retrieved by means of Web search. Evaluation in the challenging domain of social media shows that multi-source learning improves performance compared with rule-based KB lookups, boosting typing results for some semantic categories.
用于社交媒体的多源命名实体类型
对实体名称的语义类型的知识进行编码的类型化词汇(例如,“Paris”表示地理位置、产品或人)已被证明对许多文本处理任务很有用。虽然词典可能来源于大规模知识库(KBs),但知识库本身是不完善的,特别是它们缺乏对长尾实体名称的覆盖。我们使用多源学习推断给定实体名称的类型,考虑到通过与Freebase知识库对齐获得的信息、网络规模的分布模式和通过网络搜索检索到的全球半结构化上下文。在社交媒体领域的评估表明,与基于规则的知识库查找相比,多源学习提高了性能,提高了某些语义类别的输入结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信