On the computation of the topology of plane curves

D. Diatta, F. Rouillier, Marie-Françoise Roy
{"title":"On the computation of the topology of plane curves","authors":"D. Diatta, F. Rouillier, Marie-Françoise Roy","doi":"10.1145/2608628.2608670","DOIUrl":null,"url":null,"abstract":"Let <i>P</i> ∈ Z[<i>X, Y</i>] be a square-free polynomial and C(<i>P</i>):= {(α, β) ∈ R<sup>2</sup>, <i>P</i>(α, β) = 0} be the real algebraic curve defined by <i>P</i>. Our main result is an algorithm for the computation of the local topology in a neighbourhood of each of the singular points and critical points of the projection wrt the <i>X</i>-axis in <i>Õ</i>(<i>d</i><sup>6</sup>τ+<i>d</i><sup>7</sup>) bit operations where <i>Õ</i> means that we ignore logarithmic factors in <i>d</i> and <i>τ</i>. Compared to state of the art sub-algorithms used for computing a Cylindrical Algebraic Decomposition, this result avoids a generic shear and gives a deterministic algorithm for the computation of the topology of C(<i>P</i>) <i>i.e</i> a straight-line planar graph isotopic to C(<i>P</i>) in <i>Õ</i>(<i>d</i><sup>6</sup><i>τ</i> + <i>d</i><sup>7</sup>) bit operations.","PeriodicalId":243282,"journal":{"name":"International Symposium on Symbolic and Algebraic Computation","volume":"237 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2608628.2608670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Let P ∈ Z[X, Y] be a square-free polynomial and C(P):= {(α, β) ∈ R2, P(α, β) = 0} be the real algebraic curve defined by P. Our main result is an algorithm for the computation of the local topology in a neighbourhood of each of the singular points and critical points of the projection wrt the X-axis in Õ(d6τ+d7) bit operations where Õ means that we ignore logarithmic factors in d and τ. Compared to state of the art sub-algorithms used for computing a Cylindrical Algebraic Decomposition, this result avoids a generic shear and gives a deterministic algorithm for the computation of the topology of C(P) i.e a straight-line planar graph isotopic to C(P) in Õ(d6τ + d7) bit operations.
平面曲线拓扑结构的计算
设P∈Z[X, Y]是一个无平方多项式,C(P):= {(α, β)∈R2, P(α, β) = 0}是P定义的实代数曲线。我们的主要结果是在Õ(d6τ+d7)位运算中,在X轴上投影的每个奇点和临界点的邻域中计算局部拓扑的算法,其中Õ意味着我们忽略d和τ中的对数因素。与用于计算圆柱代数分解的最先进的子算法相比,该结果避免了一般剪切,并给出了计算C(P)拓扑的确定性算法,即在Õ(d6τ + d7)位操作中C(P)的直线平面图同位素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信