Estimation-based profiling for code placement optimization in sensor network programs

Lipeng Wan, Qing Cao, Wenjun Zhou
{"title":"Estimation-based profiling for code placement optimization in sensor network programs","authors":"Lipeng Wan, Qing Cao, Wenjun Zhou","doi":"10.1109/ISPASS.2015.7095799","DOIUrl":null,"url":null,"abstract":"In this work, we focus on applying profiling guided code placement to programs running on resource-constrained sensor motes. Specifically, we model the execution of sensor network programs under nondeterministic inputs as discrete-time Markov processes, and propose a novel approach named Code Tomography to estimate parameters of the Markov models that reflect sensor network programs' dynamic execution behavior by only using end-to-end timing information measured at start and end points of each procedure. The parameters estimated by Code Tomography are fed back to compilers to optimize the code placement so that branch misprediction rate can be reduced.","PeriodicalId":189378,"journal":{"name":"2015 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPASS.2015.7095799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this work, we focus on applying profiling guided code placement to programs running on resource-constrained sensor motes. Specifically, we model the execution of sensor network programs under nondeterministic inputs as discrete-time Markov processes, and propose a novel approach named Code Tomography to estimate parameters of the Markov models that reflect sensor network programs' dynamic execution behavior by only using end-to-end timing information measured at start and end points of each procedure. The parameters estimated by Code Tomography are fed back to compilers to optimize the code placement so that branch misprediction rate can be reduced.
基于估计的传感器网络程序代码放置优化分析
在这项工作中,我们专注于将分析指导的代码放置应用于运行在资源受限的传感器节点上的程序。具体来说,我们将不确定性输入下传感器网络程序的执行建模为离散时间马尔可夫过程,并提出了一种名为代码层析成像的新方法,通过仅使用在每个过程的起点和终点测量的端到端定时信息来估计反映传感器网络程序动态执行行为的马尔可夫模型的参数。将代码层析估计的参数反馈给编译器以优化代码放置,从而降低分支预测错误率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信