{"title":"On the systematic generation of Tardos’s fingerprinting codes","authors":"M. Kuribayashi, N. Akashi, M. Morii","doi":"10.1109/MMSP.2008.4665174","DOIUrl":null,"url":null,"abstract":"Digital fingerprinting is used to trace back illegal users, where unique ID known as digital fingerprints is embedded into a content before distribution. On the generation of such fingerprints, one of the important properties is collusion-resistance. Binary codes for fingerprinting with a code length of theoretically minimum order were proposed by Tardos, and the related works mainly focused on the reduction of the code length were presented. In this paper, we present a concrete and systematic construction of the Tardospsilas fingerprinting code using a chaotic map. Using a statistical model for correlation scores, a proper threshold for detecting colluders is calculated. Furthermore, for the reduction of computational costs required for the detection, a hierarchical structure is introduced on the codewords. The collusion-resistance of the generated fingerprinting codes is evaluated by a computer simulation.","PeriodicalId":402287,"journal":{"name":"2008 IEEE 10th Workshop on Multimedia Signal Processing","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE 10th Workshop on Multimedia Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2008.4665174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
Abstract
Digital fingerprinting is used to trace back illegal users, where unique ID known as digital fingerprints is embedded into a content before distribution. On the generation of such fingerprints, one of the important properties is collusion-resistance. Binary codes for fingerprinting with a code length of theoretically minimum order were proposed by Tardos, and the related works mainly focused on the reduction of the code length were presented. In this paper, we present a concrete and systematic construction of the Tardospsilas fingerprinting code using a chaotic map. Using a statistical model for correlation scores, a proper threshold for detecting colluders is calculated. Furthermore, for the reduction of computational costs required for the detection, a hierarchical structure is introduced on the codewords. The collusion-resistance of the generated fingerprinting codes is evaluated by a computer simulation.