Predicting Financial Time Series for Value Investment

K. Georgiev, K. Koparanov, D. Minkovska
{"title":"Predicting Financial Time Series for Value Investment","authors":"K. Georgiev, K. Koparanov, D. Minkovska","doi":"10.15379/ijmst.v10i3.1767","DOIUrl":null,"url":null,"abstract":"Value investment is an attractive paradigm for individual investors. It involves different steps including evaluating past performance that could be challenging. We propose a representation for financial time series in a form appropriate for both human interpretation and automatic processing. We design a model for predicting sequence of values as opposed to point values. Combined with application of encoder-decoder type of neural network model architecture this allows interpretation of model parameters and intermediate activations by domain experts. We show that predictions better than the trivial last observed value are possible. Therefore, informed investment decisions can be supported by neural network models and the proposed representation and model interpretation.  ","PeriodicalId":301862,"journal":{"name":"International Journal of Membrane Science and Technology","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Membrane Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15379/ijmst.v10i3.1767","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Value investment is an attractive paradigm for individual investors. It involves different steps including evaluating past performance that could be challenging. We propose a representation for financial time series in a form appropriate for both human interpretation and automatic processing. We design a model for predicting sequence of values as opposed to point values. Combined with application of encoder-decoder type of neural network model architecture this allows interpretation of model parameters and intermediate activations by domain experts. We show that predictions better than the trivial last observed value are possible. Therefore, informed investment decisions can be supported by neural network models and the proposed representation and model interpretation.  
价值投资的金融时间序列预测
对于个人投资者来说,价值投资是一种极具吸引力的投资模式。它涉及不同的步骤,包括评估过去的表现,这可能具有挑战性。我们提出了一种既适合人工解释又适合自动处理的金融时间序列表示形式。我们设计了一个模型来预测序列值,而不是点值。结合编码器-解码器类型的神经网络模型架构的应用,这允许由领域专家解释模型参数和中间激活。我们证明,比微不足道的最后观测值更好的预测是可能的。因此,神经网络模型以及所提出的表示和模型解释可以支持明智的投资决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信