Explainable Publication Year Prediction of Eighteenth Century Texts with the BERT Model

Iiro Rastas, Yann Ciarán Ryan, Iiro Tiihonen, Mohammadreza Qaraei, Liina Repo, Rohit Babbar, E. Mäkelä, M. Tolonen, Filip Ginter
{"title":"Explainable Publication Year Prediction of Eighteenth Century Texts with the BERT Model","authors":"Iiro Rastas, Yann Ciarán Ryan, Iiro Tiihonen, Mohammadreza Qaraei, Liina Repo, Rohit Babbar, E. Mäkelä, M. Tolonen, Filip Ginter","doi":"10.18653/v1/2022.lchange-1.7","DOIUrl":null,"url":null,"abstract":"In this paper, we describe a BERT model trained on the Eighteenth Century Collections Online (ECCO) dataset of digitized documents. The ECCO dataset poses unique modelling challenges due to the presence of Optical Character Recognition (OCR) artifacts. We establish the performance of the BERT model on a publication year prediction task against linear baseline models and human judgement, finding the BERT model to be superior to both and able to date the works, on average, with less than 7 years absolute error. We also explore how language change over time affects the model by analyzing the features the model uses for publication year predictions as given by the Integrated Gradients model explanation method.","PeriodicalId":120650,"journal":{"name":"Workshop on Computational Approaches to Historical Language Change","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Computational Approaches to Historical Language Change","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.lchange-1.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

In this paper, we describe a BERT model trained on the Eighteenth Century Collections Online (ECCO) dataset of digitized documents. The ECCO dataset poses unique modelling challenges due to the presence of Optical Character Recognition (OCR) artifacts. We establish the performance of the BERT model on a publication year prediction task against linear baseline models and human judgement, finding the BERT model to be superior to both and able to date the works, on average, with less than 7 years absolute error. We also explore how language change over time affects the model by analyzing the features the model uses for publication year predictions as given by the Integrated Gradients model explanation method.
用BERT模型预测18世纪文本的可解释出版年份
在本文中,我们描述了一个在数字化文档的十八世纪在线收藏(ECCO)数据集上训练的BERT模型。由于光学字符识别(OCR)伪影的存在,ECCO数据集提出了独特的建模挑战。我们根据线性基线模型和人类判断建立了BERT模型在出版年份预测任务上的性能,发现BERT模型优于两者,并且能够以平均小于7年的绝对误差确定作品的日期。我们还通过分析由集成梯度模型解释方法给出的模型用于出版年份预测的特征,探讨了语言随时间变化如何影响模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信