Keystroke Biometric Studies on Password and Numeric Keypad Input

Ned Bakelman, John V. Monaco, Sung-Hyuk Cha, C. Tappert
{"title":"Keystroke Biometric Studies on Password and Numeric Keypad Input","authors":"Ned Bakelman, John V. Monaco, Sung-Hyuk Cha, C. Tappert","doi":"10.1109/EISIC.2013.45","DOIUrl":null,"url":null,"abstract":"The keystroke biometric classification system described in this study was evaluated on two types of short input - passwords and numeric keypad input. On the password input, the system outperforms 14 other systems evaluated in a previous study using the same raw input data. The three top performing systems in that study had equal error rates between 9.6% and 10.2%. With the classification system developed in this study, equal error rates of 8.7% were achieved on both the features from the previous study and on a new set of features. On the numeric keypad input, the system achieved an equal error rate of 10.5% on the features from the previous study and 6.1% on a new set of features.","PeriodicalId":229195,"journal":{"name":"2013 European Intelligence and Security Informatics Conference","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 European Intelligence and Security Informatics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EISIC.2013.45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

The keystroke biometric classification system described in this study was evaluated on two types of short input - passwords and numeric keypad input. On the password input, the system outperforms 14 other systems evaluated in a previous study using the same raw input data. The three top performing systems in that study had equal error rates between 9.6% and 10.2%. With the classification system developed in this study, equal error rates of 8.7% were achieved on both the features from the previous study and on a new set of features. On the numeric keypad input, the system achieved an equal error rate of 10.5% on the features from the previous study and 6.1% on a new set of features.
密码和数字键盘输入的击键生物识别研究
本研究描述的按键生物识别分类系统在两种类型的短输入-密码和数字键盘输入上进行了评估。在密码输入方面,该系统优于先前使用相同原始输入数据的研究中评估的14个其他系统。该研究中表现最好的三个系统的错误率在9.6%到10.2%之间。使用本研究开发的分类系统,在之前研究的特征和一组新的特征上都实现了8.7%的错误率。在数字键盘输入上,系统在前一项研究的特征上的错误率为10.5%,在一组新特征上的错误率为6.1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信