An Algebraic Coupled Canonical Polyadic Decomposition Algorithm via Joint Eigenvalue Decomposition

Kai Xi, Xiaofeng Gong, Qiuhua Lin
{"title":"An Algebraic Coupled Canonical Polyadic Decomposition Algorithm via Joint Eigenvalue Decomposition","authors":"Kai Xi, Xiaofeng Gong, Qiuhua Lin","doi":"10.1145/3529570.3529576","DOIUrl":null,"url":null,"abstract":"Coupled canonical polyadic decomposition (C-CPD) has been widely applied in signal processing and data analysis. In this paper, we propose a new algebraic C-CPD algorithm based on joint eigenvalue decomposition (J-EVD). The proposed algorithm exploits the CPD structure of each tensor and the coupling among different tensors to construct a set of matrices that together admit a J-EVD, the algebraic computation of which yields the common factor matrix. Then, the remaining factor matrices can be obtained by rank-1 approximation with the obtained common factor matrix as prior knowledge. Numerical results are given to demonstrate the performance of the proposed algorithm in comparison with existing algebraic C-CPD algorithms.","PeriodicalId":430367,"journal":{"name":"Proceedings of the 6th International Conference on Digital Signal Processing","volume":"168 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th International Conference on Digital Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3529570.3529576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Coupled canonical polyadic decomposition (C-CPD) has been widely applied in signal processing and data analysis. In this paper, we propose a new algebraic C-CPD algorithm based on joint eigenvalue decomposition (J-EVD). The proposed algorithm exploits the CPD structure of each tensor and the coupling among different tensors to construct a set of matrices that together admit a J-EVD, the algebraic computation of which yields the common factor matrix. Then, the remaining factor matrices can be obtained by rank-1 approximation with the obtained common factor matrix as prior knowledge. Numerical results are given to demonstrate the performance of the proposed algorithm in comparison with existing algebraic C-CPD algorithms.
基于联合特征值分解的代数耦合正则多进分解算法
耦合正则多进分解(C-CPD)在信号处理和数据分析中有着广泛的应用。本文提出了一种新的基于联合特征值分解(J-EVD)的代数C-CPD算法。该算法利用每个张量的CPD结构和不同张量之间的耦合构造一组共同承认J-EVD的矩阵,其代数计算得到公因式矩阵。然后,将得到的公共因子矩阵作为先验知识,通过秩-1近似得到剩余的因子矩阵。数值结果表明了该算法与现有代数C-CPD算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信