A class of neural adaptive FIR filters for complex-valued load prediction

I. Krcmar, P. Maric, M. Bozic
{"title":"A class of neural adaptive FIR filters for complex-valued load prediction","authors":"I. Krcmar, P. Maric, M. Bozic","doi":"10.1109/NEUREL.2010.5644047","DOIUrl":null,"url":null,"abstract":"Load prediction is a necessity in a deregulated electrical energy sector. It is important financially and technically. In order to cope with nonlinear and non stationary character of a load signal, an efficient adaptive predictor should be employed. Also, power utilities manage load information as a complex-valued signal. To this cause, performance of a class of complex-valued gradient descent (GD) neural adaptive finite impulse response (FIR) filters is analyzed. It is shown that fully complex nonlinear GD algorithms have the best performance in a load prediction task. To support the analysis, experiments are carried out on the test load signal, metered on a medium voltage feeder.","PeriodicalId":227890,"journal":{"name":"10th Symposium on Neural Network Applications in Electrical Engineering","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"10th Symposium on Neural Network Applications in Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEUREL.2010.5644047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Load prediction is a necessity in a deregulated electrical energy sector. It is important financially and technically. In order to cope with nonlinear and non stationary character of a load signal, an efficient adaptive predictor should be employed. Also, power utilities manage load information as a complex-valued signal. To this cause, performance of a class of complex-valued gradient descent (GD) neural adaptive finite impulse response (FIR) filters is analyzed. It is shown that fully complex nonlinear GD algorithms have the best performance in a load prediction task. To support the analysis, experiments are carried out on the test load signal, metered on a medium voltage feeder.
一类用于复杂负荷预测的神经自适应FIR滤波器
在放松管制的电力能源部门,负荷预测是必要的。这在财务和技术上都很重要。为了处理负载信号的非线性和非平稳特性,需要采用一种有效的自适应预测器。此外,电力公司将负荷信息作为复值信号进行管理。为此,分析了一类复值梯度下降(GD)神经自适应有限脉冲响应(FIR)滤波器的性能。结果表明,在负荷预测任务中,完全复杂非线性遗传算法的性能最好。为了支持分析,在中压馈线上对测试负载信号进行了实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信