Revisiting Graph Persistence for Updates and Efficiency

T. Dey, T. Hou
{"title":"Revisiting Graph Persistence for Updates and Efficiency","authors":"T. Dey, T. Hou","doi":"10.48550/arXiv.2302.12796","DOIUrl":null,"url":null,"abstract":"It is well known that ordinary persistence on graphs can be computed more efficiently than the general persistence. Recently, it has been shown that zigzag persistence on graphs also exhibits similar behavior. Motivated by these results, we revisit graph persistence and propose efficient algorithms especially for local updates on filtrations, similar to what is done in ordinary persistence for computing the vineyard. We show that, for a filtration of length $m$, (i) switches (transpositions) in ordinary graph persistence can be done in $O(\\log m)$ time; (ii) zigzag persistence on graphs can be computed in $O(m\\log m)$ time, which improves a recent $O(m\\log^4n)$ time algorithm assuming $n$, the size of the union of all graphs in the filtration, satisfies $n\\in\\Omega({m^\\varepsilon})$ for any fixed $0<\\varepsilon<1$; (iii) open-closed, closed-open, and closed-closed bars in dimension $0$ for graph zigzag persistence can be updated in $O(\\log m)$ time, whereas the open-open bars in dimension $0$ and closed-closed bars in dimension $1$ can be done in $O(\\sqrt{m}\\,\\log m)$ time.","PeriodicalId":380945,"journal":{"name":"Workshop on Algorithms and Data Structures","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Algorithms and Data Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2302.12796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

It is well known that ordinary persistence on graphs can be computed more efficiently than the general persistence. Recently, it has been shown that zigzag persistence on graphs also exhibits similar behavior. Motivated by these results, we revisit graph persistence and propose efficient algorithms especially for local updates on filtrations, similar to what is done in ordinary persistence for computing the vineyard. We show that, for a filtration of length $m$, (i) switches (transpositions) in ordinary graph persistence can be done in $O(\log m)$ time; (ii) zigzag persistence on graphs can be computed in $O(m\log m)$ time, which improves a recent $O(m\log^4n)$ time algorithm assuming $n$, the size of the union of all graphs in the filtration, satisfies $n\in\Omega({m^\varepsilon})$ for any fixed $0<\varepsilon<1$; (iii) open-closed, closed-open, and closed-closed bars in dimension $0$ for graph zigzag persistence can be updated in $O(\log m)$ time, whereas the open-open bars in dimension $0$ and closed-closed bars in dimension $1$ can be done in $O(\sqrt{m}\,\log m)$ time.
重新审视图持久化的更新和效率
众所周知,图上的普通持久化可以比一般持久化更有效地计算。最近,图形上的之字形持久性也显示出类似的行为。在这些结果的激励下,我们重新审视了图持久性,并提出了高效的算法,特别是针对过滤的本地更新,类似于在计算葡萄园的普通持久性中所做的事情。我们证明,对于长度为$m$的过滤,(i)普通图持久性中的切换(换位)可以在$O(\log m)$时间内完成;(ii)图上之字形持续时间可以在$O(m\log m)$时间内计算,改进了最近的$O(m\log^4n)$时间算法,该算法假设过滤中所有图的并集大小$n$对任意固定的$0<\varepsilon<1$满足$n\in\Omega({m^\varepsilon})$;(iii)对于图形之字形持久性,$0$维的开闭、闭开和闭闭条可以在$O(\log m)$时间内更新,而$0$维的开开条和$1$维的闭闭条可以在$O(\sqrt{m}\,\log m)$时间内更新。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信