Artificial Intelligence Empowered UAVs Data Offloading in Mobile Edge Computing

G. Fragkos, Nicholas Kemp, Eirini-Eleni Tsiropoulou, S. Papavassiliou
{"title":"Artificial Intelligence Empowered UAVs Data Offloading in Mobile Edge Computing","authors":"G. Fragkos, Nicholas Kemp, Eirini-Eleni Tsiropoulou, S. Papavassiliou","doi":"10.1109/ICC40277.2020.9149115","DOIUrl":null,"url":null,"abstract":"The advances introduced by Unmanned Aerial Vehicles (UAVs) are manifold and have paved the path for the full integration of UAVs, as intelligent objects, into the Internet of Things (IoT). This paper brings artificial intelligence into the UAVs data offloading process in a multi-server Mobile Edge Computing (MEC) environment, by adopting principles and concepts from game theory and reinforcement learning. Initially, the autonomous MEC server selection for partial data offloading is performed by the UAVs, based on the theory of the stochastic learning automata. A non-cooperative game among the UAVs is then formulated to determine the UAVs’ data to be offloaded to the selected MEC servers, while the existence of at least one Nash Equilibrium (NE) is proven by exploiting the power of submodular games. A best response dynamics framework and two alternative reinforcement learning algorithms are introduced that converge to an NE, and their tradeoffs are discussed. The overall framework performance evaluation is achieved via modeling and simulation, in terms of its efficiency and effectiveness, under different operation approaches and scenarios.","PeriodicalId":106560,"journal":{"name":"ICC 2020 - 2020 IEEE International Conference on Communications (ICC)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICC 2020 - 2020 IEEE International Conference on Communications (ICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICC40277.2020.9149115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

The advances introduced by Unmanned Aerial Vehicles (UAVs) are manifold and have paved the path for the full integration of UAVs, as intelligent objects, into the Internet of Things (IoT). This paper brings artificial intelligence into the UAVs data offloading process in a multi-server Mobile Edge Computing (MEC) environment, by adopting principles and concepts from game theory and reinforcement learning. Initially, the autonomous MEC server selection for partial data offloading is performed by the UAVs, based on the theory of the stochastic learning automata. A non-cooperative game among the UAVs is then formulated to determine the UAVs’ data to be offloaded to the selected MEC servers, while the existence of at least one Nash Equilibrium (NE) is proven by exploiting the power of submodular games. A best response dynamics framework and two alternative reinforcement learning algorithms are introduced that converge to an NE, and their tradeoffs are discussed. The overall framework performance evaluation is achieved via modeling and simulation, in terms of its efficiency and effectiveness, under different operation approaches and scenarios.
人工智能在移动边缘计算中支持无人机数据卸载
无人机(uav)带来的进步是多方面的,并为无人机作为智能对象完全集成到物联网(IoT)中铺平了道路。本文采用博弈论和强化学习的原理和概念,将人工智能引入多服务器移动边缘计算(MEC)环境下的无人机数据卸载过程。首先,基于随机学习自动机理论,由无人机自主选择MEC服务器进行部分数据卸载。然后制定了无人机之间的非合作博弈,以确定无人机的数据要卸载到选定的MEC服务器上,同时利用子模块博弈的力量证明了至少存在一个纳什均衡(NE)。介绍了一种最佳响应动力学框架和两种可选的强化学习算法,它们收敛于NE,并讨论了它们的权衡。在不同的操作方式和场景下,通过建模和仿真对框架的整体性能进行评估,评估其效率和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信