{"title":"Experimental assessment of vision-based sensing for small UAS sense and avoid","authors":"R. Opromolla, G. Fasano, D. Accardo","doi":"10.1109/DASC43569.2019.9081725","DOIUrl":null,"url":null,"abstract":"This paper presents first results of an experimental flight-test campaign aimed to gather data for performance assessment of non-cooperative Sense and Avoid architectures for small Unmanned Aircraft Systems (UAS). The attention is here focused on vision-based approaches. An innovative sensing technique is proposed which exploits a Deep Learning (DL) network as the main processing block of the detector algorithm, and a multi-temporal strategy for track generation and confirmation. Both the detection and tracking phases foresee ad-hoc solutions to deal with the presence of intruders either above or below the horizon. Two customized small quadcopters, equipped with high-resolution color cameras, are used to reproduce in flight low-altitude, near-collision scenarios characterized by different speed and height above ground, thus being able to act simultaneously as ownship and intruder. Results demonstrate the capability of the DL-based detector to provide maximum declaration range around 300 m and 100 m, above and below the horizon, respectively. The tracker can robustly produce firm track of the intruder while rejecting many false positives, particularly occurring in below-the-horizon scenarios.","PeriodicalId":129864,"journal":{"name":"2019 IEEE/AIAA 38th Digital Avionics Systems Conference (DASC)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/AIAA 38th Digital Avionics Systems Conference (DASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DASC43569.2019.9081725","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
This paper presents first results of an experimental flight-test campaign aimed to gather data for performance assessment of non-cooperative Sense and Avoid architectures for small Unmanned Aircraft Systems (UAS). The attention is here focused on vision-based approaches. An innovative sensing technique is proposed which exploits a Deep Learning (DL) network as the main processing block of the detector algorithm, and a multi-temporal strategy for track generation and confirmation. Both the detection and tracking phases foresee ad-hoc solutions to deal with the presence of intruders either above or below the horizon. Two customized small quadcopters, equipped with high-resolution color cameras, are used to reproduce in flight low-altitude, near-collision scenarios characterized by different speed and height above ground, thus being able to act simultaneously as ownship and intruder. Results demonstrate the capability of the DL-based detector to provide maximum declaration range around 300 m and 100 m, above and below the horizon, respectively. The tracker can robustly produce firm track of the intruder while rejecting many false positives, particularly occurring in below-the-horizon scenarios.