{"title":"on-Demand system reliability: The DeSyRe project","authors":"I. Sourdis","doi":"10.1109/SAMOS.2013.6621130","DOIUrl":null,"url":null,"abstract":"Summary form only given. The DeSyRe project builds on-demand adaptive, reliable Systems-on-Chips. In response to the current semiconductor technology trends that make chips becoming less reliable, DeSyRe describes a new generation of by design reliable systems, at a reduced power and performance cost. This is achieved through the following main contributions. DeSyRe defines a fault-tolerant system architecture built out of unreliable components, rather than aiming at totally fault-free, and hence more costly chips. In addition, DeSyRe systems are on-demand adaptive to various types and densities of faults, as well as to other system constraints and application requirements. For leveraging on-demand adaptation/customization and reliability at reduced cost, a new dynamically reconfigurable substrate is proposed and combined with runtime system software support. The above define a generic and repeatable design framework for a large variety of SoCs, which within the project - is applied to two medical SoCs with high reliability constraints and diverse performance and power requirements. In this talk, an overview of the DeSyRe and our current research findings are described.","PeriodicalId":382307,"journal":{"name":"2013 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMOS.2013.6621130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Summary form only given. The DeSyRe project builds on-demand adaptive, reliable Systems-on-Chips. In response to the current semiconductor technology trends that make chips becoming less reliable, DeSyRe describes a new generation of by design reliable systems, at a reduced power and performance cost. This is achieved through the following main contributions. DeSyRe defines a fault-tolerant system architecture built out of unreliable components, rather than aiming at totally fault-free, and hence more costly chips. In addition, DeSyRe systems are on-demand adaptive to various types and densities of faults, as well as to other system constraints and application requirements. For leveraging on-demand adaptation/customization and reliability at reduced cost, a new dynamically reconfigurable substrate is proposed and combined with runtime system software support. The above define a generic and repeatable design framework for a large variety of SoCs, which within the project - is applied to two medical SoCs with high reliability constraints and diverse performance and power requirements. In this talk, an overview of the DeSyRe and our current research findings are described.