Exploiting the Selfish Gene algorithm for evolving hardware cellular automata

Fulvio Corno, M. Reorda, Giovanni Squillero
{"title":"Exploiting the Selfish Gene algorithm for evolving hardware cellular automata","authors":"Fulvio Corno, M. Reorda, Giovanni Squillero","doi":"10.1109/CEC.2000.870816","DOIUrl":null,"url":null,"abstract":"Testing is a key issue in the design and production of digital circuits and the adoption of built-in self test techniques is increasingly popular. This paper shows an application in the field of electronic CAD of the Selfish Gene algorithm, an evolutionary algorithm based on a recent interpretation of the Darwinian theory. A three-phase optimization algorithm is exploited for determining the structure of a built-in self test architecture that is able to achieve good fault coverage results with a reduced area overhead. Experimental results show that the attained fault coverage is substantially higher than what can be obtained by previously proposed methods with comparable area requirements.","PeriodicalId":218136,"journal":{"name":"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2000.870816","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Testing is a key issue in the design and production of digital circuits and the adoption of built-in self test techniques is increasingly popular. This paper shows an application in the field of electronic CAD of the Selfish Gene algorithm, an evolutionary algorithm based on a recent interpretation of the Darwinian theory. A three-phase optimization algorithm is exploited for determining the structure of a built-in self test architecture that is able to achieve good fault coverage results with a reduced area overhead. Experimental results show that the attained fault coverage is substantially higher than what can be obtained by previously proposed methods with comparable area requirements.
利用自私基因算法进化硬件元胞自动机
测试是数字电路设计和生产中的一个关键问题,采用内置自测技术越来越受欢迎。本文展示了自私基因算法在电子CAD领域的应用,这是一种基于达尔文理论最新解释的进化算法。一个三相优化算法被用来确定一个内置的自检架构的结构,该架构能够在减少面积开销的情况下获得良好的故障覆盖结果。实验结果表明,在相同的面积要求下,所获得的断层覆盖率大大高于先前提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信