Q-matrix learning and DINA model parameter estimation

Yuan Sun, Shiwei Ye, Guiping Su, Yi Sun
{"title":"Q-matrix learning and DINA model parameter estimation","authors":"Yuan Sun, Shiwei Ye, Guiping Su, Yi Sun","doi":"10.1109/BESC.2016.7804471","DOIUrl":null,"url":null,"abstract":"The DINA model is one of the most widely used models in cognitive and skills diagnosis, and several algorithms have been developed for estimating the model parameters. However, since the parameter space is very large and has a mix of binary variables, even medium-sized testing is extremely challenging. To make the model practical, a fast optimization algorithm for parameter estimation is needed. In this study, we converted the deterministic Q-matrix learning problem into a Boolean matrix factorization (BMF) problem and developed a recursive algorithm to find an approximate solution while solving the uncertainty parameters analytically using maximum likelihood estimation (MLE). We proved that the MLE is equivalent to the minimum information entropy of the DINA model. Simulation results demonstrated that our proposed algorithm converges rapidly to the optimal solution under suitable initial values of skill - item association and is insensitive to the initial values of the uncertainty parameters.","PeriodicalId":225942,"journal":{"name":"2016 International Conference on Behavioral, Economic and Socio-cultural Computing (BESC)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Behavioral, Economic and Socio-cultural Computing (BESC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BESC.2016.7804471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The DINA model is one of the most widely used models in cognitive and skills diagnosis, and several algorithms have been developed for estimating the model parameters. However, since the parameter space is very large and has a mix of binary variables, even medium-sized testing is extremely challenging. To make the model practical, a fast optimization algorithm for parameter estimation is needed. In this study, we converted the deterministic Q-matrix learning problem into a Boolean matrix factorization (BMF) problem and developed a recursive algorithm to find an approximate solution while solving the uncertainty parameters analytically using maximum likelihood estimation (MLE). We proved that the MLE is equivalent to the minimum information entropy of the DINA model. Simulation results demonstrated that our proposed algorithm converges rapidly to the optimal solution under suitable initial values of skill - item association and is insensitive to the initial values of the uncertainty parameters.
q -矩阵学习和DINA模型参数估计
DINA模型是认知和技能诊断中应用最广泛的模型之一,目前已经开发了几种用于估计模型参数的算法。然而,由于参数空间非常大,并且有二元变量的混合,即使是中等规模的测试也是极具挑战性的。为了使模型实用,需要一种快速的参数估计优化算法。本文将确定性q矩阵学习问题转化为布尔矩阵分解(BMF)问题,并开发了一种递归算法来寻找近似解,同时使用最大似然估计(MLE)解析求解不确定性参数。我们证明了MLE等价于DINA模型的最小信息熵。仿真结果表明,该算法在合适的技能-项目关联初始值下快速收敛到最优解,且对不确定性参数的初始值不敏感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信