Generating t-Closed Partitions of Datasets with Multiple Sensitive Attributes

Vikas Thammanna Gowda, R. Bagai
{"title":"Generating t-Closed Partitions of Datasets with Multiple Sensitive Attributes","authors":"Vikas Thammanna Gowda, R. Bagai","doi":"10.1109/CSP58884.2023.00024","DOIUrl":null,"url":null,"abstract":"The popular t-closeness privacy model requires the “distance” between the distribution of sensitive attribute values in any given raw dataset and their distribution in every equivalence class created to not exceed some privacy threshold t. While most existing methods for achieving t-closeness handle data with just a single sensitive attribute, datasets with multiple sensitive attributes are very common in the real world. Here we demonstrate a technique for creating equivalence classes from a dataset containing multiple sensitive attributes. The equivalence classes generated by our method satisfy t-closeness without taking any $t$ values as input. While generalization of quasi-identifier attributes leads to information loss, the size of generated classes is roughly identical and differs by at most one, which results in a lower information loss. Generating classes with minimum information loss for a given value of $t$ is NP-hard, the equivalence classes generated by our method takes O(r log r) time.","PeriodicalId":255083,"journal":{"name":"2023 7th International Conference on Cryptography, Security and Privacy (CSP)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 7th International Conference on Cryptography, Security and Privacy (CSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSP58884.2023.00024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The popular t-closeness privacy model requires the “distance” between the distribution of sensitive attribute values in any given raw dataset and their distribution in every equivalence class created to not exceed some privacy threshold t. While most existing methods for achieving t-closeness handle data with just a single sensitive attribute, datasets with multiple sensitive attributes are very common in the real world. Here we demonstrate a technique for creating equivalence classes from a dataset containing multiple sensitive attributes. The equivalence classes generated by our method satisfy t-closeness without taking any $t$ values as input. While generalization of quasi-identifier attributes leads to information loss, the size of generated classes is roughly identical and differs by at most one, which results in a lower information loss. Generating classes with minimum information loss for a given value of $t$ is NP-hard, the equivalence classes generated by our method takes O(r log r) time.
生成具有多个敏感属性的数据集的t-Closed分区
流行的t-close隐私模型要求在任何给定的原始数据集中敏感属性值的分布与其在创建的每个等价类中的分布之间的“距离”不超过某些隐私阈值t。虽然大多数现有的实现t-close的方法只处理具有单个敏感属性的数据,但具有多个敏感属性的数据集在现实世界中非常常见。这里我们演示了一种从包含多个敏感属性的数据集创建等价类的技术。我们的方法生成的等价类在不接受任何$t$值作为输入的情况下满足t接近性。虽然准标识符属性泛化会导致信息丢失,但生成的类大小大致相同,最多相差一个,因此信息丢失较小。对于给定的$t$,生成具有最小信息损失的类是np困难的,我们的方法生成的等价类需要O(r log r)时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信