End-to-End Text Recognition Using Local Ternary Patterns, MSER and Deep Convolutional Nets

M. Opitz, Markus Diem, Stefan Fiel, Florian Kleber, Robert Sablatnig
{"title":"End-to-End Text Recognition Using Local Ternary Patterns, MSER and Deep Convolutional Nets","authors":"M. Opitz, Markus Diem, Stefan Fiel, Florian Kleber, Robert Sablatnig","doi":"10.1109/DAS.2014.29","DOIUrl":null,"url":null,"abstract":"Text recognition in natural scene images is an application for several computer vision applications like licence plate recognition, automated translation of street signs, help for visually impaired people or image retrieval. In this work an end-to-end text recognition system is presented. For detection an AdaBoost ensemble with a modified Local Ternary Pattern (LTP) feature-set with a post-processing stage build upon Maximally Stable Extremely Region (MSER) is used. The text recognition is done using a deep Convolution Neural Network (CNN) trained with backpropagation. The system presented outperforms state of the art methods on the ICDAR 2003 dataset in the text-detection (F-Score: 74.2%), dictionary-driven cropped-word recognition (F-Score: 87.1%) and dictionary-driven end-to-end recognition (F-Score: 72.6%) tasks.","PeriodicalId":220495,"journal":{"name":"2014 11th IAPR International Workshop on Document Analysis Systems","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 11th IAPR International Workshop on Document Analysis Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DAS.2014.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

Abstract

Text recognition in natural scene images is an application for several computer vision applications like licence plate recognition, automated translation of street signs, help for visually impaired people or image retrieval. In this work an end-to-end text recognition system is presented. For detection an AdaBoost ensemble with a modified Local Ternary Pattern (LTP) feature-set with a post-processing stage build upon Maximally Stable Extremely Region (MSER) is used. The text recognition is done using a deep Convolution Neural Network (CNN) trained with backpropagation. The system presented outperforms state of the art methods on the ICDAR 2003 dataset in the text-detection (F-Score: 74.2%), dictionary-driven cropped-word recognition (F-Score: 87.1%) and dictionary-driven end-to-end recognition (F-Score: 72.6%) tasks.
使用局部三元模式、MSER和深度卷积网络的端到端文本识别
自然场景图像中的文本识别是几种计算机视觉应用的应用,如车牌识别、街道标志的自动翻译、视障人士的帮助或图像检索。本文提出了一个端到端文本识别系统。用于检测的AdaBoost集成具有改进的局部三元模式(LTP)特征集,并在最大稳定极端区域(MSER)基础上建立后处理阶段。文本识别使用经过反向传播训练的深度卷积神经网络(CNN)完成。该系统在文本检测(F-Score: 74.2%)、字典驱动的裁切词识别(F-Score: 87.1%)和字典驱动的端到端识别(F-Score: 72.6%)任务上优于ICDAR 2003数据集上最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信