Improving the efficiency of subset queries on raster images

T. Malik, N. Best, J. Elliott, R. Madduri, Ian T Foster
{"title":"Improving the efficiency of subset queries on raster images","authors":"T. Malik, N. Best, J. Elliott, R. Madduri, Ian T Foster","doi":"10.1145/2070770.2070776","DOIUrl":null,"url":null,"abstract":"We propose a parallel method to accelerate the performance of subset queries on raster images. The method, based on map-reduce paradigm, includes two principles from database management systems to improve the performance of subset queries. First, we employ column-oriented storage format for storing locationand weather variables. Second, we improve data locality by storing multidimensional attributes such as space and time in a Hilbert order instead of a serial, row-wise order. We implement the principles in a map-reduce environment, maintaining compatibility with the replication and scheduling constraints. We show through experiments that the techniques improve data locality and increase performance of subset queries, respectively, by 5x and 2x.","PeriodicalId":246527,"journal":{"name":"Proceedings of the ACM SIGSPATIAL Second International Workshop on High Performance and Distributed Geographic Information Systems","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM SIGSPATIAL Second International Workshop on High Performance and Distributed Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2070770.2070776","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We propose a parallel method to accelerate the performance of subset queries on raster images. The method, based on map-reduce paradigm, includes two principles from database management systems to improve the performance of subset queries. First, we employ column-oriented storage format for storing locationand weather variables. Second, we improve data locality by storing multidimensional attributes such as space and time in a Hilbert order instead of a serial, row-wise order. We implement the principles in a map-reduce environment, maintaining compatibility with the replication and scheduling constraints. We show through experiments that the techniques improve data locality and increase performance of subset queries, respectively, by 5x and 2x.
提高栅格图像子集查询的效率
我们提出了一种并行方法来加速栅格图像子集查询的性能。该方法基于map-reduce范式,采用了数据库管理系统中提高子集查询性能的两个原则。首先,我们使用面向列的存储格式来存储位置和天气变量。其次,我们通过以希尔伯特顺序而不是串行、逐行顺序存储空间和时间等多维属性来改进数据的局部性。我们在map-reduce环境中实现这些原则,保持与复制和调度约束的兼容性。我们通过实验证明,这些技术分别提高了数据局部性和子集查询的性能,分别提高了5倍和2倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信