Sound based fault classify diagnosis method using artificial neural network and autoencoder processing

Ke-Wei Lin, Wei-Ling Lin, Y. Tsai, F. Hsiao
{"title":"Sound based fault classify diagnosis method using artificial neural network and autoencoder processing","authors":"Ke-Wei Lin, Wei-Ling Lin, Y. Tsai, F. Hsiao","doi":"10.1109/is3c57901.2023.00105","DOIUrl":null,"url":null,"abstract":"We achieved a fault diagnosis for a certain air pump using an artificial neural network. The operating sound of the pump is recorded by a single microphone, after processing by an unsupervised autoencoder, 108 groups of samples containing only 1-second audio data are inputted to the neural network classifier. The training rounds and the neurons of the autoencoder are tested. After training, the provided detection network can finally give the classifying accuracy of up to 99% according to 1-sec sound data.","PeriodicalId":142483,"journal":{"name":"2023 Sixth International Symposium on Computer, Consumer and Control (IS3C)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 Sixth International Symposium on Computer, Consumer and Control (IS3C)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/is3c57901.2023.00105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We achieved a fault diagnosis for a certain air pump using an artificial neural network. The operating sound of the pump is recorded by a single microphone, after processing by an unsupervised autoencoder, 108 groups of samples containing only 1-second audio data are inputted to the neural network classifier. The training rounds and the neurons of the autoencoder are tested. After training, the provided detection network can finally give the classifying accuracy of up to 99% according to 1-sec sound data.
基于声音的故障分类诊断方法采用人工神经网络和自编码器处理
利用人工神经网络对某型气泵进行了故障诊断。泵的工作声音由单个麦克风记录,经过无监督自编码器处理后,将108组包含1秒音频数据的样本输入到神经网络分类器中。对自编码器的训练轮数和神经元进行了测试。经过训练,所提供的检测网络最终可以根据1秒的声音数据给出高达99%的分类准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信