Multi-Agent Inverse Reinforcement Learning

Sriraam Natarajan, Gautam Kunapuli, Kshitij Judah, Prasad Tadepalli, K. Kersting, J. Shavlik
{"title":"Multi-Agent Inverse Reinforcement Learning","authors":"Sriraam Natarajan, Gautam Kunapuli, Kshitij Judah, Prasad Tadepalli, K. Kersting, J. Shavlik","doi":"10.1109/ICMLA.2010.65","DOIUrl":null,"url":null,"abstract":"Learning the reward function of an agent by observing its behavior is termed inverse reinforcement learning and has applications in learning from demonstration or apprenticeship learning. We introduce the problem of multi-agent inverse reinforcement learning, where reward functions of multiple agents are learned by observing their uncoordinated behavior. A centralized controller then learns to coordinate their behavior by optimizing a weighted sum of reward functions of all the agents. We evaluate our approach on a traffic-routing domain, in which a controller coordinates actions of multiple traffic signals to regulate traffic density. We show that the learner is not only able to match but even significantly outperform the expert.","PeriodicalId":336514,"journal":{"name":"2010 Ninth International Conference on Machine Learning and Applications","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"77","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Ninth International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2010.65","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 77

Abstract

Learning the reward function of an agent by observing its behavior is termed inverse reinforcement learning and has applications in learning from demonstration or apprenticeship learning. We introduce the problem of multi-agent inverse reinforcement learning, where reward functions of multiple agents are learned by observing their uncoordinated behavior. A centralized controller then learns to coordinate their behavior by optimizing a weighted sum of reward functions of all the agents. We evaluate our approach on a traffic-routing domain, in which a controller coordinates actions of multiple traffic signals to regulate traffic density. We show that the learner is not only able to match but even significantly outperform the expert.
多智能体逆强化学习
通过观察智能体的行为来学习其奖励函数被称为逆强化学习,并在示范学习或学徒学习中有应用。我们引入了多智能体逆强化学习问题,其中多智能体的奖励函数通过观察它们的不协调行为来学习。然后,集中式控制器通过优化所有代理的奖励函数的加权和来学习协调它们的行为。我们在交通路由域上评估我们的方法,其中控制器协调多个交通信号的动作来调节交通密度。我们的研究表明,学习者不仅能够匹配甚至明显优于专家。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信