Constructing an Alias List for Named Entities during an Event

NUT@EMNLP Pub Date : 2017-09-01 DOI:10.18653/v1/W17-4405
Anietie U Andy, Mark Dredze, M. Rwebangira, Chris Callison-Burch
{"title":"Constructing an Alias List for Named Entities during an Event","authors":"Anietie U Andy, Mark Dredze, M. Rwebangira, Chris Callison-Burch","doi":"10.18653/v1/W17-4405","DOIUrl":null,"url":null,"abstract":"In certain fields, real-time knowledge from events can help in making informed decisions. In order to extract pertinent real-time knowledge related to an event, it is important to identify the named entities and their corresponding aliases related to the event. The problem of identifying aliases of named entities that spike has remained unexplored. In this paper, we introduce an algorithm, EntitySpike, that identifies entities that spike in popularity in tweets from a given time period, and constructs an alias list for these spiked entities. EntitySpike uses a temporal heuristic to identify named entities with similar context that occur in the same time period (within minutes) during an event. Each entity is encoded as a vector using this temporal heuristic. We show how these entity-vectors can be used to create a named entity alias list. We evaluated our algorithm on a dataset of temporally ordered tweets from a single event, the 2013 Grammy Awards show. We carried out various experiments on tweets that were published in the same time period and show that our algorithm identifies most entity name aliases and outperforms a competitive baseline.","PeriodicalId":207795,"journal":{"name":"NUT@EMNLP","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NUT@EMNLP","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W17-4405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In certain fields, real-time knowledge from events can help in making informed decisions. In order to extract pertinent real-time knowledge related to an event, it is important to identify the named entities and their corresponding aliases related to the event. The problem of identifying aliases of named entities that spike has remained unexplored. In this paper, we introduce an algorithm, EntitySpike, that identifies entities that spike in popularity in tweets from a given time period, and constructs an alias list for these spiked entities. EntitySpike uses a temporal heuristic to identify named entities with similar context that occur in the same time period (within minutes) during an event. Each entity is encoded as a vector using this temporal heuristic. We show how these entity-vectors can be used to create a named entity alias list. We evaluated our algorithm on a dataset of temporally ordered tweets from a single event, the 2013 Grammy Awards show. We carried out various experiments on tweets that were published in the same time period and show that our algorithm identifies most entity name aliases and outperforms a competitive baseline.
在事件期间为命名实体构造别名列表
在某些领域,来自事件的实时知识可以帮助做出明智的决策。为了提取与事件相关的相关实时知识,识别与事件相关的命名实体及其对应的别名非常重要。识别已命名实体的别名的问题仍未得到探索。在本文中,我们引入了一种算法EntitySpike,它可以识别给定时间段内推文中人气飙升的实体,并为这些飙升的实体构建别名列表。EntitySpike使用时间启发式方法来识别事件期间同一时间段(以分钟为单位)内出现的具有相似上下文的命名实体。使用这种时间启发式将每个实体编码为矢量。我们将展示如何使用这些实体向量来创建命名实体别名列表。我们在一个数据集上评估了我们的算法,这些数据集是来自2013年格莱美颁奖典礼这一单一事件的临时排序推文。我们对同一时间段内发布的推文进行了各种实验,结果表明我们的算法识别了大多数实体名称别名,并且优于竞争基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信