N. Yeung, L. Menviel, K. Meissner, A. Taschetto, T. Ziehn, M. Chamberlain
{"title":"Weak Southern Hemispheric monsoons during the Last Interglacial\nperiod","authors":"N. Yeung, L. Menviel, K. Meissner, A. Taschetto, T. Ziehn, M. Chamberlain","doi":"10.5194/cp-2020-149","DOIUrl":null,"url":null,"abstract":"Abstract. Due to different orbital configurations, high northern latitude boreal summer insolation was higher during the Last Interglacial period (LIG; 129–116 thousand years before present, ka) than during the preindustrial period (PI), while high southern latitude austral summer insolation was lower. The climatic response to these changes is studied here with focus on the southern hemispheric monsoons, by performing an equilibrium experiment of the LIG at 127 ka with the Australian Earth System Model, ACCESS-ESM1.5, as part of the Paleoclimate Model Intercomparison Project 4 (PMIP4). In our simulation, mean surface air temperature increases by 6.5 °C over land during boreal summer between 40° N and 60° N in the LIG compared to PI, leading to a northward shift of the Inter-Tropical Convergence Zone (ITCZ) and a strengthening of the North African and Indian monsoons. Despite 0.4 °C cooler conditions in austral summer in the Southern Hemisphere (0–90° S), annual mean air temperatures are 1.2 °C higher at southern mid-to-high latitudes (40° S–80° S). These differences in temperature are coincident with a large-scale reorganisation of the atmospheric circulation. The ITCZ shifts southward in the Atlantic and Indian sectors during the LIG austral summer compared to PI, leading to increased precipitation over the southern tropical oceans. However, the decline in Southern Hemisphere insolation during austral summer induces a significant cooling over land, which in turn weakens the land-sea temperature contrast, leading to an overall reduction (−20 %) in monsoonal precipitation over the Southern Hemisphere's continental regions. The intensity and areal extent of the Australian, South American and South African monsoons are consistently reduced. This is associated with greater pressure and subsidence over land due to a strengthening of the southern hemispheric Hadley cell during austral summer.","PeriodicalId":263057,"journal":{"name":"Climate of The Past Discussions","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Climate of The Past Discussions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/cp-2020-149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract. Due to different orbital configurations, high northern latitude boreal summer insolation was higher during the Last Interglacial period (LIG; 129–116 thousand years before present, ka) than during the preindustrial period (PI), while high southern latitude austral summer insolation was lower. The climatic response to these changes is studied here with focus on the southern hemispheric monsoons, by performing an equilibrium experiment of the LIG at 127 ka with the Australian Earth System Model, ACCESS-ESM1.5, as part of the Paleoclimate Model Intercomparison Project 4 (PMIP4). In our simulation, mean surface air temperature increases by 6.5 °C over land during boreal summer between 40° N and 60° N in the LIG compared to PI, leading to a northward shift of the Inter-Tropical Convergence Zone (ITCZ) and a strengthening of the North African and Indian monsoons. Despite 0.4 °C cooler conditions in austral summer in the Southern Hemisphere (0–90° S), annual mean air temperatures are 1.2 °C higher at southern mid-to-high latitudes (40° S–80° S). These differences in temperature are coincident with a large-scale reorganisation of the atmospheric circulation. The ITCZ shifts southward in the Atlantic and Indian sectors during the LIG austral summer compared to PI, leading to increased precipitation over the southern tropical oceans. However, the decline in Southern Hemisphere insolation during austral summer induces a significant cooling over land, which in turn weakens the land-sea temperature contrast, leading to an overall reduction (−20 %) in monsoonal precipitation over the Southern Hemisphere's continental regions. The intensity and areal extent of the Australian, South American and South African monsoons are consistently reduced. This is associated with greater pressure and subsidence over land due to a strengthening of the southern hemispheric Hadley cell during austral summer.