A Fast Algorithm for CU Depth Decision Based on the Minimum Risk Bayesian Criterion

Jianlong Guo, Jiang Xue, Manhua Wen
{"title":"A Fast Algorithm for CU Depth Decision Based on the Minimum Risk Bayesian Criterion","authors":"Jianlong Guo, Jiang Xue, Manhua Wen","doi":"10.1109/ACIE51979.2021.9381078","DOIUrl":null,"url":null,"abstract":"In the high-efficiency video coding standard, the division process of coding units is an optimal depth search process. Due to the block method of the quadtree, the depth selection process of the coding unit will consume a lot of coding time. This paper proposes an algorithm for fast selection of coding unit depth based on the minimum risk Bayesian criterion. It uses huge database information to learn Bayesian threshold and Bayesian conditional probability density offline, establishes a look-up table, and selects the most Excellent subset of coding features. This algorithm can effectively reduce the time for the current coding unit to select depth. The experimental results show that compared with the standard test software HM16.16, this algorithm saves 41.8% of the total coding time on average.","PeriodicalId":264788,"journal":{"name":"2021 IEEE Asia Conference on Information Engineering (ACIE)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Asia Conference on Information Engineering (ACIE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACIE51979.2021.9381078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the high-efficiency video coding standard, the division process of coding units is an optimal depth search process. Due to the block method of the quadtree, the depth selection process of the coding unit will consume a lot of coding time. This paper proposes an algorithm for fast selection of coding unit depth based on the minimum risk Bayesian criterion. It uses huge database information to learn Bayesian threshold and Bayesian conditional probability density offline, establishes a look-up table, and selects the most Excellent subset of coding features. This algorithm can effectively reduce the time for the current coding unit to select depth. The experimental results show that compared with the standard test software HM16.16, this algorithm saves 41.8% of the total coding time on average.
基于最小风险贝叶斯准则的CU深度快速决策算法
在高效视频编码标准中,编码单元的划分过程是一个最优深度搜索过程。由于四叉树的分块方法,编码单元的深度选择过程将消耗大量的编码时间。提出了一种基于最小风险贝叶斯准则的编码单元深度快速选择算法。它利用庞大的数据库信息离线学习贝叶斯阈值和贝叶斯条件概率密度,建立查找表,选择最优的编码特征子集。该算法可以有效减少当前编码单元选择深度的时间。实验结果表明,与标准测试软件HM16.16相比,该算法平均节省总编码时间41.8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信