Learning dialogue strategies within the Markov decision process framework

E. Levin, R. Pieraccini, W. Eckert
{"title":"Learning dialogue strategies within the Markov decision process framework","authors":"E. Levin, R. Pieraccini, W. Eckert","doi":"10.1109/ASRU.1997.658989","DOIUrl":null,"url":null,"abstract":"We introduce a stochastic model for dialogue systems based on the Markov decision process. Within this framework we show that the problem of dialogue strategy design can be stated as an optimization problem, and solved by a variety of methods, including the reinforcement learning approach. The advantages of this new paradigm include objective evaluation of dialogue systems and their automatic design and adaptation. We show some preliminary results on learning a dialogue strategy for an air travel information system.","PeriodicalId":253278,"journal":{"name":"1997 IEEE Workshop on Automatic Speech Recognition and Understanding Proceedings","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"155","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1997 IEEE Workshop on Automatic Speech Recognition and Understanding Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.1997.658989","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 155

Abstract

We introduce a stochastic model for dialogue systems based on the Markov decision process. Within this framework we show that the problem of dialogue strategy design can be stated as an optimization problem, and solved by a variety of methods, including the reinforcement learning approach. The advantages of this new paradigm include objective evaluation of dialogue systems and their automatic design and adaptation. We show some preliminary results on learning a dialogue strategy for an air travel information system.
在马尔可夫决策过程框架内学习对话策略
提出了一种基于马尔可夫决策过程的对话系统随机模型。在这个框架内,我们表明对话策略设计问题可以被描述为一个优化问题,并通过各种方法解决,包括强化学习方法。这种新范式的优点包括对对话系统的客观评价及其自动设计和适应。我们展示了学习航空旅行信息系统对话策略的一些初步结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信