{"title":"Detection of Colon Cancer Using Inception V3 and Ensembled CNN Model","authors":"I. J. Swarna, Emrana Kabir Hashi","doi":"10.1109/ECCE57851.2023.10101654","DOIUrl":null,"url":null,"abstract":"Colon cancer is one of the most prevalent types of cancer. Early diagnosis of colon cancer can lead to an increased chance of successful treatment with less cost. To speed up this process deep learning can provide very useful and effective approaches. In this thesis work, two types of models were developed to classify colon cells from image data - one is the transfer learning model where a deep network Inception V3 is used as the pre-trained model and the other one is an Ensembled model which combines predictions of three simple sequential CNN models. To develop these models, 10k images were used from the LC25000 dataset and a very small Warwick-QU dataset having only 165 images was used to provide new data for retraining and testing purposes. Both models achieved a high result for the first dataset with 99.4% and 99.95% accuracy respectively, where Inception V3 showed 94.545% accuracy on new data from Warwick-QU after retraining and Ensembled model showed 78.182% accuracy. This approach can be used in research in the field of early and effective detection of colon cancer with a larger amount of varying images and more preprocessing methods to reduce overfitting and to make the model perform well in various types of images.","PeriodicalId":131537,"journal":{"name":"2023 International Conference on Electrical, Computer and Communication Engineering (ECCE)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Electrical, Computer and Communication Engineering (ECCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECCE57851.2023.10101654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Colon cancer is one of the most prevalent types of cancer. Early diagnosis of colon cancer can lead to an increased chance of successful treatment with less cost. To speed up this process deep learning can provide very useful and effective approaches. In this thesis work, two types of models were developed to classify colon cells from image data - one is the transfer learning model where a deep network Inception V3 is used as the pre-trained model and the other one is an Ensembled model which combines predictions of three simple sequential CNN models. To develop these models, 10k images were used from the LC25000 dataset and a very small Warwick-QU dataset having only 165 images was used to provide new data for retraining and testing purposes. Both models achieved a high result for the first dataset with 99.4% and 99.95% accuracy respectively, where Inception V3 showed 94.545% accuracy on new data from Warwick-QU after retraining and Ensembled model showed 78.182% accuracy. This approach can be used in research in the field of early and effective detection of colon cancer with a larger amount of varying images and more preprocessing methods to reduce overfitting and to make the model perform well in various types of images.